
VL-Con: Vision-Language Dataset for Deep Learning-based
Construction Monitoring Applications

Shun-Hsiang Hsu1, Junryu Fu2 and Mani Golparvar-Fard3

1PhD student of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, USA
2MSc of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, USA

3Professor of Civil Eng., Computer Science, and Technology Entrepreneurship,
University of Illinois Urbana-Champaign, USA

hsus2@illinois.edu, junryuf2@illinois.edu, mgolpar@illinois.edu

Abstract -
Recently, vision-language research has gained significant

interest by successfully connecting visual concepts to natu-
ral language, advancing computer vision-based construction
monitoring using a wide variety of text queries. While vision
language models demonstrate high capability, performance
degradation can be expected when adapting the model to
the ever-changing construction scenarios. In contrast to the
source image-text pairs, it is more challenging to cover the
multitude of potentially involved objects and their naming
conventions for construction activities. To bridge the domain
gap, this study aims to collect construction-specific image-
text pairs of building elements and related site work based on
the ASTM Uniformat II. The image-text pairs of 641 activities
in Uniformat are retrieved from the LAION-5B dataset based
on the image and text embeddings using CLIP with two differ-
ent prompts. Then, the collected images are labeled at the im-
age level to conclude the requirements of the vision-language
datasets for further development. Based on the results, a
vision-language dataset, VL-Con, consisting of image-text
pairs for construction monitoring applications is proposed
with the aid of a construction semantic predictor and prompt
engineering. The proposed VL-Con dataset can be accessed
through https://github.com/huhuman/VL-Con.
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1 Introduction

Vision tasks such as scene understanding and object
recognition have been widely studied for automation in
construction monitoring [1]. A significant amount of real-
ity capture data is collected to generate actionable insights
for construction monitoring [2]. Supervised learning mod-
els, such as Mask R-CNN [3] and SegFormer [4], have
been predominantly adopted in the past decade [5], neces-
sitating large-scale annotated image datasets with hard-
coded indexes of the target objects. The results can be

utilized to compare with BIM or 4D BIM for progress
monitoring. However, for recognition at a finer level (e.g.,
image segmentation), labeling images is extremely expen-
sive, and such large-scale datasets still remain unavailable
in the industry [6]. Without details in project schedules
in today’s Virtual Design and Construction (VDC) and
Project Control practices, the lack of formal definitions
around what needs to be segmented in photos causes the
gap between different construction monitoring applica-
tions.

Applications based on supervised learning methods
are limited to pre-defined classes and require extensive
post-processing to derive actionable insights. Integrating
knowledge from different models or enhancing their ca-
pability to broaden the recognition scope proves to be a
challenging task. While the AEC/O research community
has been focusing on these application-driven challenges,
the AI community has worked on developing foundation
models, such as MAE [7] and GPT-4 [8], respectively for
vision and language understanding. In this research line,
emphasis has been placed on self-supervised techniques,
allowing models to learn from large-scale data without
any annotation. Well-trained foundational models can be
seamlessly adapted to generate fine-grained segmentation
masks for various objects [9] and to create a chat agent
capable of handling diverse requests [10]. The robust-
ness and generalization of learned knowledge enable the
applications for a wide range of downstream tasks.

Since large language models (LLMs) have achieved re-
markable success in language understanding through self-
supervised learning from the billion-scale training corpus,
the robustness of text embeddings has turbocharged the
development of open-ended vision systems by incorporat-
ing arbitrary text queries. Vision-language models have
gained increasing interest in enhancing vision understand-
ing by aligning image features with text embeddings in
the latent space. Radford et al. [11] proposed the vision-
language model, CLIP, using linear projection to map the
outputs of the image and text encoders through contrastive
pre-training. CLIP under natural language supervision has
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shown promising zero-shot transfer performance on var-
ious public image datasets. Peng et al. [12] used CLIP
features to segment 3D points according to their similar-
ities to text queries, enabling open-vocabulary scene un-
derstanding. Tsai et al. [13] fine-tuned the CLIP model to
translate construction safety-related semantics in images
to textual information for site inspectors. These studies
have demonstrated a more applicable user interface that
facilitates the direct extraction of actionable insights, po-
tentially advancing computer vision-based applications for
construction monitoring.

Despite the recent breakthrough of the vision-language
models, their performance on the construction scenes re-
mains untapped, leaving room for potential improvements
in the current vision system. Considering that most vision-
language models are trained with a wide variety of image-
text pairs instead of specific domain knowledge, the mod-
els may not contain enough construction knowledge to be
adapted to downstream tasks for construction monitoring.
To address the issue, this paper leverages the CLIP model
to collect images according to the text embeddings of the
building construction activities in the Uniformat standard.
The Uniformat standard encompasses eight main activities
related to building construction. The clip-retrieval
[14] API is employed to retrieve the top ten search results
from the LAION-5B dataset [15]. To provide the model
with additional textual clues regarding construction se-
mantics, a second round of image collection is conducted
using the prompt template "A photo of {activity}
in construction" to observe any noticeable improve-
ments. Consequently, about 6200 images of 641 cate-
gories are collected in each round. Each retrieved image
is reviewed whether it is correct or is within the con-
struction context. Zero-shot performance of CLIP on the
construction image classification dataset [16] is presented.

The results show that even using the prompt template
instead of contextless activity names, the CLIP model is
still not good enough at retrieving correct images for the
target activity as well as zero-shot classification. Improv-
ing the prompts in this way only ensures the retrieval of
construction-related content and not for the correct cat-
egory. To further improve the dataset, strategies aiming
for enhancing text prompts and visual construction seman-
tics to obtain more accurate images are proposed. Similar
to [11], where different context prompts are ensembled to
enhance the zero-shot performance, three different prompt
templates are used to increase the opportunities of retriev-
ing the correct images of the work activities. Additionally,
a construction semantic classifier is developed to remove
non-construction images by estimating the score of how
an image is construction-related. Both of the two strate-
gies expedite the image collection of the proposed VL-Con
dataset and help ensure the quality of the collected images.

Based on the enhanced image retrieval through CLIP
API, the images of different activities are collected and
reviewed, and another round of manually image collection
on web is conducted to finalize our dataset. Only 142
of the 641 activities have additional 5 images from the
manual collection because some activities are considered
ambiguous (e.g., specialty and supplementary activities)
or cover too broad range of definitions (e.g., high-level
activities). Note that the reason could also be why the
previous collections fail to find proper images to some
activities. By comparing the collected images of dif-
ferent activities at different round through large vision-
language model and our manual collection, the gap in
image features is significant and highlights the need of
more construction-specific image-text pairs to improve
in-domain knowledge. To adapt the large-scale vision-
language models to construction monitoring applications,
such datasets containing construction knowledge would
be required. As a preliminary and pioneer work, the
proposed VL-Con dataset is publicly available through
https://github.com/huhuman/VL-Con.

2 Related work
2.1 Computer vision in construction monitoring

In construction progress monitoring, reality capture
data were collected to be compared against BIM or 4D
BIM for tracking element changes and confirming project
schedules. Pal et al. [17] estimated the completion per-
centage of building construction progress in combination
of site images, reconstructed point clouds, and BIMs.
These efforts have been constrained by low LOD across
various model disciplines of BIM and a lack of details
in project schedules. Jung et al. [18] proposed a trans-
former model to ensure the consistency among project
schedule data by aligning them with Uniformat classifi-
cations. Núñez-Morales et al. [19] generated synthetic
images from high-LOD BIMs to help develop supervised
learning models recognize different under-construction el-
ements as the well-annotated datasets satisfying a certain
quantity and quality to train the models are not available.
Despite transfer learning from another pre-trained super-
vised model with large-scale datasets, Lin et al. [20] pre-
sented that the dataset bias may prevent the model from
learning construction-specific contents, and the transfer-
learning Faster R-CNN even had poorer performance than
the one trained from scratch on bridge defects.

Inspired by LLMs, vision foundation models using self-
supervised learning techniques have shown promising re-
sults and become popular alternatives. He et al. [7] pro-
posed masked autoencoders (MAE) following the idea of
masked language modeling to pre-train the large vision
model with a wide variety of image data without labels.
Kirillov et al. [9] proposed the large-scale dataset of 1B
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Figure 1. Overview of the image collection and labeling

Table 1. The label distributions of the two collected image sets
Label A B C D E F G Total

"{activity}"
Correct 18.6% 48.8% 62.6% 28.4% 21.7% 33.0% 43.2% 37.7%

Incorrect but related 30.4% 18.8% 23.1% 10.2% 15.1% 11.7% 14.3% 16.5%
Incorrect 51.0% 32.4% 14.3% 61.4% 63.2% 55.3% 42.5% 45.8%

Total 494 738 854 1677 503 528 1352 6146
"{activity} in construction"

Correct 26.0% 50.1% 53.4% 26.1% 21.5% 25.5% 44.1% 36.4%
Incorrect but related 54.7% 34.3% 40.1% 29.0% 24.2% 34.5% 26.0% 32.6%

Incorrect 19.3% 15.7% 6.5% 44.9% 54.2% 40.0% 29.9% 31.1%
Total 494 738 854 1677 503 528 1352 6212

masks and 11M images to develop the segment anything
model (SAM) using MAE pre-trained vision transformer
as the image encoder for class-agnostic segmentation. Tak-
ing advantage of the robustness of such vision foundation
models, Ahmadi et al. [21] combined SAM with U-Net
to enhance crack detection in concrete. Ge et al. [22]
fine-tuned SAM for crack segmentation to improve cross-
dataset generalization.

However, a number of challenges still hinder the com-
puter vision-based applications for construction monitor-
ing, including (1) lack of available ground truth segmenta-
tion for relevant physical assets in reality capture datasets
and (2) lack of formal definitions around what needs to be
segmented in pictures in the first place. Vision-language
models that take the advantage of robust language under-
standing have broadened vision understanding to alleviate
the limitations. The extracted image features reflecting the
context relationship can be more easily adapted to various

construction scenes.

2.2 Vision-language in construction monitoring

Before vision-language foundation models emerge, re-
search has been focused on interpreting construction im-
ages in the form of natural language. For example, image
captioning that can directly generate actionable insights
for construction monitoring has been studied in the past
decade. Without the robust text embeddings from founda-
tion models, creating new and meaningful textual labels
or captions of various construction scenes is the core hin-
drance. Xiao et al. [23] proposed the image captioning
dataset for common construction machines and their ac-
tivities. Liu et al. [24] proposed the image captioning
dataset of five construction activities with the details of
worker actions and safety gears. Zhai et al. [25] created
the image captioning dataset for perceiving unsafe behav-

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

1130



ior of workers in construction.
The reviewed image captioning methods mostly adopted

the encoder-decoder architecture to perform image-to-text
translation, where CNN models were used as the image
encoder, and RNN models were used as the text decoder.
Bang and Kim [26] extracted features of object regions
from drone images through Faster R-CNN as the image
encoder and decode the features using LSTM to produce
dense captioning. Wang et al. [27] used Mask R-CNN as
the image encoder and LSTM with the attention layer as the
text decoder for construction works, including masonry,
reinforcement steel bar tying, and tiling. The adopted
single-modal models were only trained with their proposed
datasets to connect the representations across vision and
language. As the studies focused on specific scopes and
scenarios, the learned knowledge of their fully supervised
models was limited to the adopted datasets.

The limitations of the encoder-decoder architecture
made the applications difficult to be scaled. In con-
trast, Radford et al. [11] proposed the dual-encoder model,
CLIP, to first jointly train text and vision encoders with
numerous image-text pairs of a wide range of cases. By
bridging multi-modal understanding through natural lan-
guage supervision, the vision-language model was capa-
ble of handling various scenarios with more robust image
embeddings. A text decoder can be specifically trained
for a downstream task that needs text generation [28].
As being a promising alternative, the feasibility analysis
of the vision-language foundation model for construction
monitoring applications is needed to explore and validate
model’s understanding of construction contexts.

3 Vision-Language Understanding of Con-
struction Context

3.1 Data collection and labeling

This paper retrieves the corresponding images using the
Uniformat work item as the text query from the LAION
dataset through their clip-retrieval [14] API (see Fig-
ure 1). The default parameter values are adopted to search
and rank the images, including aesthetic scoring. Addi-
tionally, the keyword, ”in construction”, is prepended to
the original names as text queries to collect the images in
a second run. This is expected to provide more semantic
clues of construction and help improve the performance
because some of the names are not exclusive in the con-
struction industry, and the model does not specifically
learn to recognize them.

After that, this paper manually review every image and
classify them into three groups: (1) correct - the image
represents the corresponding activity, (2) incorrect but
related - the image does not indicate the corresponding
activity but contains construction semantics, (3) incor-
rect - the image is not related to any construction activi-

ties. Figure 1 illustrates the examples of the defined three
groups.

Table 1 presents the summary of the dataset over eight
different main activities. As presented, only about one-
third of the images are correctly retrieved for the given con-
struction activities. Despite the increase in the ratio of the
class of incorrect but related as shown in Figure 2 when us-
ing the prompt "{activity} in construction", the
overall accuracy is not significantly improved. As a result,
construction-specific image-text pairs are needed to en-
hance the construction knowledge for developing a more
robust foundation model in the construction domain.

Figure 2. Image retrieval results with and without
”in construction”

3.2 Zero-shot performance on construction images

The zero-shot performance of the CLIP model on con-
struction images is evaluated by the BCS dataset [16],
which contains about 212,000 photos of buildings and
construction sites for classification. To evaluate the under-
standing of construction contexts, 104,484 images of 54
categories for construction sites in the BCS dataset are em-
ployed to perform the zero-shot classification. The image
numbers of different classes are Bridge (6752), Site fence
(4980), Wood floor (4808), Ordinary Door (4568), etc.
As stated in [11], the same prompt for zero-shot transfer
to existing image classification datasets, "A photo of a
{label}.", is used to wrap the inputs instead of using
contextless class names.

Cheng et al. [16] has achieved the top-1 accuracy of up
to 94.7% on the dataset by a fully supervised model while
zero-shot CLIP underperforms by over 35%. The CLIP
model only achieves the top-1 accuracy of 59.39% and
top-3 accuracy of 81.41%. Figure 3 presents the zero-shot
accuracy distribution over different categories. Among
all the categories, the model has the highest accuracy of
99.40% for Site vest and the lowest accuracy of 0% for
U-steel. The U-steel images are mostly misclassified into
other steel-related classes, such as Sheet steel and Angle
steel. The situation infers that the lack of construction-
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specific knowledge limits the model to only recognize
general contents. The professional terms with only minor
differences significantly confuse the model. The evidence
can be found as the top-3 accuracy is increased by over
20%.

4 VL-Con: Vision-Language Dataset for
Construction Monitoring

4.1 Requirements of vision-language datasets

Based on the CLIP’s understanding of construction
context, construction-specific vision-language datasets
are required to enhance the construction knowledge.
Through manually inspecting the collected images, Fig-
ure 4 presents that potential causes of the poor perfor-
mance on image retrieval. The requirements of the vision-
language dataset preparation reflecting the issues for con-
struction monitoring are summarized as follows:

1. Ambiguous description/name of work activity
Although construction knowledge is required to un-
derstand the semantics of the activities, some of their
names are too ambiguous to be easily interpreted even
by people with construction backgrounds. The names
become more abstract when the corresponding activ-
ities are at a higher level because they need to cover
various children’s items. To keep the simplicity, only
a few words are used to define the whole scope, lead-
ing to failures in capturing the semantics behind the
words without any additional context. For example,
in the adopted Uniformat system, Floor Construc-
tion (B1010), Roof Construction (B1020), and Stairs
(B1080) are all sub-items of Superstructure (B10).
Figure 4(a) demonstrates that the CLIP model fails
to retrieve correct images of the superstructure but
is capable of recognizing other common words like
floor and roof. Consequently, prompt engineering is
needed to include more context for CLIP to retrieve
more correct images.

2. Missing photos of work activity
Though the examples of image retrieval show correct
semantics, more construction-related and progress-
detailed images are expected. Most of the activities
suffer from missing photos in the training data be-
cause the construction activity or corresponding as-
semblies contain numerous components and steps.
The issue limits the model to return only the photos
of finished states or irrelevant content. Figure 4(b)
shows that this is especially true for any categories as-
sociated with ”supplementary” or ”specialties”. For
example, Exterior Wall Specialties (B2090) include
below-grade egress, window wells, and any kind of
finished product tangent to the exterior wall [29].

The exhibited semantics overlapped with other cat-
egories such as Exterior Fabrications (B2080.70)
leading to failures in differentiating between each
other, whereas exterior fabrications are more about
column covers or decorative finishing directly ap-
plied onto the wall. This phenomenon can also be
attributed to the ambiguous nature of the activity
names. Without specific images that demonstrate the
difference between such similar sub-categories, even
engineers could be confused with the definitions.

3. Searching preference for construction needs
In the adopted CLIP image retrieval, the image qual-
ity can be determined by the aesthetic predictor, en-
suring the retrieved images are closer to what users
are expecting. A photo of a document copy or pro-
cedure diagram may get a low score and be ranked
behind because such an image contains less vision
information, meaning little object information is in-
cluded. For example, Figure 4(c) shows the image
retrieval results of heat generation under different
aesthetic score thresholds and average weights. As
searching preference could significantly impact im-
age retrieval, the construction-specific preference can
be developed to help retrieve more correct images of
our interest to build the vision-language dataset.

4.2 Prompt engineering and construction semantic
classification

To improve image retrieval of the Uniformat ac-
tivities, three different prompts with more details
are used: (1) "A photo of {activity}, a type of
building construction activity", (2) "A photo
of {full-activities-hierarchy}", and (3) "A
photo of {activity}, revit". The first and second
one is to replace the previous ”in construction” keyword
with more specific definitions of the activities. The fi-
nal one is taking advantage of the exclusive word in the
construction industry to force the retrieved images to be
related to construction while the images are mostly about
virtual scenes. The enhanced prompts can help collect
more potentially correct image-text pairs as presented in
our final proposed VL-Con dataset.

For the semantic predictor, the original image retrieval
already employed the aesthetic predictor to ensure the im-
ages contain more useful information and significant ob-
ject appearance instead of diagrams and flow charts. This
paper trained a ResNet-18 model for binary construc-
tion semantic classification with the previously labeled
dataset of Uniformat categories, followed by the prompt
"{activity} in construction". After removing du-
plicate images, nearly 5000 images were then separated
into an 8 to 2 ratio for training and validation sets. The

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

1132



Figure 3. The zero-shot top-1 and top-3 accuracy of different classes

Figure 4. The examples for the requirements of vision-language datasets

images were all resized to 224 by 224, and the training set
was augmented with random crop and random horizontal
flip. The model after 25 epochs achieves the accuracy
of 73.63% on the validation set with a wide range of im-
ages associated with various categories in the Uniformat.
Figure 5 demonstrates the model predictions and scores
of the construction semantics of the images. One no-
ticeable feature of this very simple trained model is to
identify diagram-like images or ”unrealistic images” and
filter more realistic scenes such as those of construction
sites.

With the two proposed strategies, another three rounds
of image collection are conducted, and the retrieved im-
ages are firstly filtered by the proposed construction se-
mantic predictor. After that, manual inspection is still
required to finally complete the vision-language dataset
for enhancing construction knowledge of foundation mod-
els. Note that because some of the activities may not
exist in the LAION-5B dataset, the image retrieval pos-
sibly fail to find any correct images of those activities.
In that case, another image sources will be needed in the
future to acquire the corresponding photos of the activi-
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ties. To ensure certain quantity and quality of the dataset,
the dataset additionally include 5 images for each of 142
activities manually collected through the web. The final
VL-Con dataset are publicly available and scalable, allow-
ing other researchers to add more image-text pairs to any
of Uniformat categories.

Figure 5. Construction semantic classification

5 Conclusions
This paper conducted preliminary analysis of vision-

language understanding of CLIP to construction scenes
with regards to Uniformat. The images from the LAION-
5B dataset were retrieved using the CLIP model to as-
sess its applicability of understanding construction scenes.
Upon detailed review of the retrieved images, the limita-
tions of the existing vision language model were identi-
fied: appropriate prompt to maximize the likely result,
insufficient images that precisely describe all the activities
in Uniformat, and inability to contextualize construction
scenes from images. To address these limitations, two
strategies, prompt engineering and a semantic classifier of
construction scenes, were proposed to complete the vision-
language dataset for construction monitoring. Another
manual image collection is also conducted to further en-
hance the dataset. The final VL-Con dataset was released
to provide the basis for further method development and
model training benchmark. As a pioneer work for adapting
vision-language models to construction monitoring appli-
cations, the dataset can be scaled by adding more images
for any of the activities, boosting the construction-specific
foundation models.
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