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Abstract 

As machinery assumes a critical role in modern 

construction, particularly in Singapore’s 

development initiatives, maintaining excavators 

becomes paramount. Despite the prevalence of faults 

within this equipment, the scarcity of skilled 

mechanics compounds the challenge of timely 

diagnoses and maintenance. Leveraging deep 

learning methodologies, this research endeavors to 

analyze audio signals from excavators, aiming to 

identify distinctive patterns indicative of faults. 

Unlike existing studies primarily relying on vibration 

signals, this research focuses on audio signals for 

excavator fault prediction. Challenges involving 

ambient noise in construction sites and limitations in 

dataset size and imbalance compel the need for robust 

machine learning models capable of accurate fault 

diagnoses. The proposed methodology involves 

dataset collection, audio signal processing, feature 

extraction, and neural network training to 

differentiate normal operation from faulty conditions. 

This study delves into the application of machine 

learning and signal processing techniques to discern 

excavator conditions, aiming to classify their 

operational state as either faulty or operational. With 

an achieved 89.33% accuracy, 94.74% precision, and 

85.71% recall, the method demonstrates promising 

performance. This research offers the potential to 

fortify excavator maintenance practices, potentially 

mitigating the impact of faults on construction 

productivity and costs. 
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1 Introduction 

Throughout history, both equipment and labor have 

constituted essential components within the built 

environment [1]. The utilization of manual labor in 

construction has perennially remained a cornerstone. 

However, with technological advancements, the reliance 

on manual labor diminishes, giving way to a greater 

dependence on cutting-edge machinery at construction 

sites. These machines facilitate construction processes, 

fostering heightened productivity and long-term cost 

savings. Unlike humans, susceptible to fatigue, 

machinery operates tirelessly, accomplishing tasks 

equivalent to multiple human capacities without 

succumbing to exhaustion. Nevertheless, machines are 

susceptible to distinct forms of fatigue, manifesting as 

engine overheating or operational stress due to 

inadequate maintenance, leading to component faults. 

This study aims to investigate excavators, extensively 

used across Singapore, particularly as the government 

endeavors to intensify subterranean development and 

coastal land reclamation. A prevalent challenge arises 

from the difficulty in instilling a sense of ownership and 

care for excavators. Primarily, excavator operators do not 

possess ownership, potentially impeding their 

understanding of how malfunctioning machinery impacts 

project outcomes, thus neglecting proper maintenance. 

Further compounded by demanding project schedules, 

these excavators endure heavy utilization, increasing 

susceptibility to faults necessitating servicing and upkeep. 

Unfortunately, only a select few excavator brands 

demonstrate prolonged durability with minimal 

maintenance costs.  

Optimal excavator maintenance, beyond routine 

servicing, necessitates pre-empting potential faults. 

Minor issues such as hydraulic oil or radiator water 

leakage, or even loose bucket attachments, have the 

propensity to escalate into significant problems, 

potentially damaging the excavator if not promptly 

addressed. However, amidst a scarcity of foreign 

domestic workers and the industry’s shift toward 

technologically advanced machines, the availability of 

experienced mechanics capable of accurately diagnosing 

and rectifying excavator faults diminishes. This makes 

manual diagnosis of excavator faults more difficult and 

troublesome.  

To address this challenge, an effective approach 

involves deploying advanced machine learning 

techniques to autonomously discern machine activities or 

construction equipment by analyzing their distinctive 
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sound patterns [1]. The progression of machine learning 

methodologies has facilitated fault detection successfully 

across diverse machinery, encompassing construction 

excavators. Typically, sensor fusion strategies, such as 

employing microphone arrays to capture machine-

generated sounds, are utilized to gather audio signals. 

Even a single microphone holds the capability to capture 

sound from multiple machines. 

While machine learning models leveraging sound 

signals have demonstrated success in domains like rotary 

machines [2] and combustion engines [3], their 

application specifically to excavators remains to be 

explored. Prior studies on excavator fault prediction [4], 

primarily relied on vibration signals as the primary input 

data. Contrary to vibration signals, audio signals are more 

intuitive and simpler to collect. However, the prevalent 

ambient noise within construction sites significantly 

undermines sound detection accuracy, complicating fault 

detection via sound signals. Therefore, establishing a 

dataset acquired in relatively quiet environments, 

encompassing both normal operating conditions and 

faults, becomes imperative as a standard resource for 

fault diagnosis. 

Moreover, machine learning techniques rely on 

extensive, well-balanced datasets to construct highly 

accurate models. However, practical scenarios often 

present challenges in collecting such vast datasets. 

Instead, smaller and imbalanced datasets tend to be more 

common. Regrettably, limited research explores 

excavator fault detection efficacy using such data 

configurations. Hence, it becomes imperative to devise 

robust machine learning methodologies capable of 

effectively diagnosing excavator conditions, even when 

working with small and imbalanced datasets. 

The primary objective of this research is to classify 

excavators as either faulty or operational through the 

utilization of signal processing methodologies in tandem 

with deep learning techniques. The process involves 

collecting faulty diagnosis datasets, denoising audio files, 

extracting audio features, and training a neural network 

to distinguish between normal operation and faulty 

conditions in excavators. Subsequently, the neural 

network’s classification efficacy will be assessed using a 

validation dataset, employing pertinent evaluation 

metrics. An underlying assumption integral to this 

research involves acknowledging that the model's 

predictive capacity may not extend to anticipating 

excavator faults in their nascent or imminent stages, as 

the recordings of faults are already captured in their final 

state. 

2 Related Work 

2.1 Machine Fault Detection 

The utilization of diverse sensor signals for machine 

fault detection has witnessed significant advancements in 

recent years. Leading researchers, such as Janssen & 

Arteaga (2020), have adeptly leveraged machine-

learning methodologies to identify faults in rotary and 

structural machinery [5]. Signals play a crucial role in 

discerning activity and vibrations in large-scale mining 

and material handling equipment, where effective 

vibration management is paramount to mitigate the risk 

of potential mine collapses during ongoing excavation 

and movement. Wieckowski et al. (2020) utilized the Fast 

Fourier Transform (FFT) to convert vibration waveforms 

from the time domain to the frequency domain, 

subsequently devising a vibration control algorithm [6]. 

MEMS (Micro-Electro-Mechanical Systems)-based 

vibration sensors have gained widespread adoption 

across various applications, showcasing their 

effectiveness in accurately recognizing activity across a 

spectrum of equipment types [7]. However, the practical 

challenges associated with directly attaching these 

sensors to equipment, especially for smaller machinery 

or construction tools like concrete cutting saws and small 

concrete mixers, cannot be overlooked [8]. Additionally, 

the typical deployment of vibration sensors for individual 

machines presents limitations [9], particularly in 

scenarios where multiple machines operate concurrently. 

In contrast, an audio-based system offers a solution by 

obviating the need to attach a microphone to each 

machine, instead relying on strategically positioned 

microphones throughout the site. 

Therefore, audio signals have emerged as valuable 

data resources for activity recognition and fault detection. 

Typically, this methodology adheres to a standard 

framework: (1) recording audio data using a single 

microphone, (2) utilizing FFT and Inverse Fast Fourier 

Transform (IFFT) to denoise the audio and extract 

pertinent features within specific time frames by 

transitioning between time and frequency domains, and 

(3) training a machine-learning algorithm using these 

extracted features [1]. Furthermore, pioneering 

techniques, such as employing a mobile microphone for 

spatial information in machine condition monitoring, 

have been explored [5]. The utilization of an array of 

multiple microphones has also proven effective in 

predicting the position of a mass on a vibrating plate, 

emulating structural flaws or engine imbalances. Its data 

processing involves employing peak-finding methods 

and three-dimensional imaging techniques. Collectively, 

these research findings underscore the efficacy of 

leveraging microphone signals as a valuable tool for fault 

detection and condition monitoring across a spectrum of 

diverse applications. 
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2.2 Sound-based Classification Using Neural 

Network 

Acoustic sensors offer distinct advantages over other 

sensors due to their affordability and ease of placement, 

rendering them highly practical for event classification 

[10]. The collection of ambient sounds through simple 

microphones or sensors has paved the way for advanced 

signal-processing models. Consequently, there has been 

a surge in research focused on classifying construction 

work, machine types, and detecting faults using sound-

based methodologies, driven by their cost-effectiveness 

and widespread applicability. 

There have been studies in the literature focus on 

sound-based Construction Site Monitoring (CSM), 

aiming primarily at identifying activities or classifying 

brands and models of working machines. Multiple 

methodologies have been developed, often using 

Machine Learning (ML) approaches [11], [12]. Some 

commonly employed methods include Support Vector 

Machines (SVMs), k-Nearest Neighbors (k-NN), 

Artificial Neural Networks (ANNs), Hidden Markov 

Models (HMMs), and Gaussian Mixture Models (GMMs) 

[13]. 

Recently, deep learning methods using Neural 

Network become much more popular with their 

promising results. The most used model in the field of 

DL is the Convolutional Neural Network (CNN). 

Maccagno et al. employed a CNN-based model to 

classify different types and brands of machines on 

construction sites, obtaining 97.08% accuracy [14]. 

Similarly, Scarpiniti et al. presented a deep recurrent 

neural network (DRNN) model to classify five classes of 

multiple vehicles and tools using sound signals, reporting 

97% accuracy [15]. While the mentioned studies exhibit 

promising advancements in classifying machine types 

and brands based on sound, an area that remains 

unexplored is the utilization of audio signals for fault 

detection. Despite the successes in identifying 

construction equipment and activities through sound 

analysis, there is a lack of research focused on leveraging 

these signals specifically for detecting faults or 

malfunctions within construction machinery such as 

excavators. 

2.3 Imbalanced Data Processing 

Conventional machine-learning techniques 

commonly rely on training models using balanced 

datasets, ensuring an equitable number of data samples 

for each class. Such datasets facilitate unbiased learning 

and streamline model performance evaluation. Many 

fault detection studies leverage extensive datasets 

encompassing several thousand samples for each class. 

However, datasets collected often exhibit imbalance, 

particularly when certain classes are rare, leading to 

limited samples representing these rare occurrences. 

Imbalanced datasets markedly affect model quality, 

resulting in poorer predictive performances for the 

minority class and potential overfitting to training 

samples, constraining the model’s ability to generalize 

during testing [16]. This limitation is crucial, especially 

when the accuracy of predicting the minority class holds 

more significance than that of the majority class, 

particularly in scenarios where the cost of false negative 

predictions for the minority class is substantial [17]. 

Hence, various methods have emerged to address 

imbalanced datasets, primarily within the realm of data-

level methods aiming to enhance the performance of 

standard machine learning algorithms. Resampling, a 

prevalent data-level technique, aims to rectify class 

distribution imbalances. 

Random over-sampling is a widely used technique 

where, for instance, Hensman and Masko (2015) applied 

this approach to an image dataset by randomly 

duplicating minority class samples until reaching a 

balanced representation [18]. Results indicated that 

random over-sampling notably enhanced model 

performance, akin to that of a balanced dataset. An 

advanced technique, Synthetic Minority Over-sampling 

Technique (SMOTE), generates synthetic samples 

derived from the minority class data to alleviate 

overfitting issues typically associated with regular over-

sampling [19]. While commonly used, SMOTE’s 

efficacy has raised concerns. Sharma et al. (2018) 

indicated that in highly imbalanced classes (e.g., ratios 

around 1:1000), SMOTE-generated samples might 

negatively impact model performance by incorporating 

features overlapping with the majority class [20]. Elreedy 

and Atiya (2019) supported this observation, noting that 

due to SMOTE’s nature, synthetic samples for very small 

or high-dimensional classes become less representative 

[21]. Nonetheless, despite its drawbacks, SMOTE 

improves classification, albeit not to the extent of a 

balanced dataset. 

 

 
Figure 1. Overview of the proposed method 

 

Data Collection 

(single microphone)

Data Preprocessing

(data labeling + SMOTE)

Feature Extraction 

(MFCC)

Fault Detection

(CNN-based)
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3 Method 

Figure 1 presents an outline of the proposed method 

of diagnosing excavator conditions. Generally, the 

methodology comprises four key steps: a) data collection; 

b) data preprocessing; c) feature extraction; and d) fault 

detection. Detailed explanations of each of these steps 

follow in the subsequent sections. 

3.1 Data Collection  

Audio data from excavators was gathered using a 

single microphone to capture the noise emitted during 

their operation. Microphone placement differed based on 

whether the excavator was idle or in operation. For idle 

instances, the microphone was positioned in close 

proximity to the fault, while during operation, it was 

placed at a safe distance of 1 to 2 meters from the 

excavator. Given that most microphones possess 360° 

sensitivity [9], the utilization of a single microphone 

suffices for data collection in this study. However, for 

more complex on-site implementation scenarios, 

employing an array of consistently positioned 

microphones may represent a more effective strategy. 

The study encompassed examinations of both “Good” 

and “Bad” conditioned excavators. “Good” noises 

represent well-conditioned excavator sounds without 

apparent faults, while “Bad” noises represent sounds 

indicative of faults. These faults encompass various 

issues such as hydraulic leakage in the arm, boom hose 

bursting, low engine power, control valve spool leaks, or 

visual indicators like smoke emanating from the 

excavator. Some faults manifest audibly, such as 

hydraulic leaks or hose bursts, while others are visually 

detectable, like smoke emissions.  

3.2 Data Preprocessing 

To enable the subsequent machine learning 

methodology, it was imperative to initially label the 

gathered dataset. Before audio recording, skilled 

mechanics conducted diagnostic assessments on the 

involved excavators. Their expertise and valuable 

insights into the excavators’ conditions were pivotal. 

Based on their evaluations, each file was meticulously 

labeled either as “0” denoting normal operational status 

or “1” indicating a faulty condition in the excavator. 

Furthermore, the reasons behind the faults were 

meticulously documented during this process.  

Apart from data labeling, the imbalanced dataset is 

another issue. Neural network effectiveness is hindered 

by small or imbalanced datasets, which are common in 

machine learning due to challenges in acquiring large, 

representative samples. Addressing this, an enhanced 

oversampling technique, SMOTE, was employed on 

minority classes. SMOTE generates synthetic samples by 

interpolating minority class samples with their nearest 

neighbors of the same class, creating similar yet distinct 

synthetic samples. This mitigates overfitting risks, 

enhancing the model’s generalization capability [19]. 

3.3 Feature Extraction 

Mel Frequency Cepstral Coefficient (MFCC) 

methodology was employed for audio signal feature 

extraction. Unlike the widely used Fast Fourier 

Transform, MFCC is designed to mirror human hearing 

capabilities. Human auditory perception of frequency 

increases logarithmically, meaning what’s perceived as a 

uniform frequency increase to humans isn’t linear. 

Additionally, human hearing is more adept at 

distinguishing lower frequencies compared to higher 

ones. MFCC efficiently captures unique features from 

recorded audio signals by employing the Mel scale, 

where lower-frequency coefficients possess greater 

spacing, while higher-frequency coefficients have 

narrower spacing, mimicking human hearing properties  

[22]. The Mel scale ensures that sounds equidistant on 

the scale are perceived as equally spaced by humans [23]. 

Leveraging MFCC, the model can learn crucial sound 

features indicative of faults. 

3.4 Fault Detection 

For fault detection in excavators, a binary 

classification approach - normal operation versus faulty - 

was undertaken. Utilizing MFCC spectrograms, specific 

spectrogram values at each point served as inputs. A 

proposed CNN-based neural network, depicted in Figure 

2, was employed. Each convolutional layer utilized 

ReLU as the activation function. Max-pooling layers 

downsampled convolved features to save processing time 

and reduce image size. At each step, maximum values 

within each window were pooled into an output matrix. 

The model utilized binary cross-entropy as the loss 

function and the Adam optimizer. To optimize the 

performance of the proposed neural network, 

hyperparameter tuning was utilized. 
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Figure 2. Proposed CNN structure 

4 Validation 

The dataset comprises 305 audio files of varied 

durations, spanning 1 to 88 seconds, recorded using a 

single microphone positioned according to the 

operational status of each excavator. Included in this 

dataset are recordings from diverse excavator brands 

such as Caterpillar (CAT), Sumitomo, Kobelco, Hitachi, 

Yanmar, Volvo, and Doosan. The excavators ranged in 

size from 5-tonne mini excavators to 38-tonne large 

excavators. Among the 305 files, 187 are classified as 

“good,” indicating excavators in optimal working 

condition, while the remaining 118 files are categorized 

as “bad,” representing excavators experiencing faults, 

which ranged from singular to multiple faults 

concurrently. These faults encompass various issues such 

as hydraulic leakages in excavator arms, burst boom 

hoses, low engine power, control valve spool leakages, 

smoke emissions, and others. While some faults, like 

hydraulic leakages, emit distinct sounds, others are only 

identifiable through visual cues like alarm lights or 

smoke emissions. Figure 3 shows some samples of the 

collected audio data, including excavators in normal 

operation and excavators with different types of faults. 

  
a) Excavator in normal 

operation 

b) Excavator with fault 

  
c) Excavator with 

hydraulic fault 

d) Excavator with engine 

fault 

  
e) excavator with aircon 

fault 

f) Excavator with 

mechanical fault 

Figure 3. Samples of the recorded excavator 

operations 

After preprocessing, the original imbalanced dataset 

has been expanded to 374 samples, with 187 “good” 

noises and 187 “bad” noises. To validate the proposed 

method, the dataset is divided into two subsets: an 80% 

training dataset and a 20% test dataset. Evaluation of the 

proposed network’s performance uses three key metrics: 

accuracy (see Equation (1)), precision (see Equation (2)), 

and recall (see Equation (3)). Accuracy denotes the ratio 

of correctly predicted observations (True Positives) to the 

total number of observations. Precision isolates the actual 

positive instances from the predicted positive dataset. 

Recall computes the count of true positives among all 

identified positives, including true positives and false 

negatives. Notably, in this study, recall holds more 

significance than the other metrics, as a false negative 

could significantly impact the excavator’s lifespan if 

faults remain unidentified and unresolved. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

(1) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(2) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(3) 

*TP: true positive; FP: false positive; TN: true 

negative; FN: false negative. 

 

Figure 4. A sample of the MFCC spectrogram 

Following the application of MFCC, the resulting 

MFCC spectrogram serves as the input for the proposed 

neural network. Illustrated in Figure 4 is a sample of the 

generated MFCC spectrogram. The X-axis delineates 
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time, while the Y-axis represents the distinct MFCC 

coefficients. Additionally, it depicts frequencies 

transformed into Mel scale values, a logarithmic 

representation of signal frequencies. Each plotted point 

in the diagram signifies a specific MFCC at a precise 

moment in time. This spectrogram offers a visual 

portrayal of sound in the Mel scale, presenting an 

alternative to the frequency domain. 

5 Results and Discussion 

The findings presented in Table 1 demonstrate the 

model’s good performance across both the training and 

test datasets. The training accuracy achieved 98.32%, 

while the test accuracy maintained a robust 89.33%. In 

terms of precision, the training and test sets displayed 

values of 97.35% and 85.71%, respectively, indicating 

the model’s ability to minimize false positives, ensuring 

accurate positive predictions. Moreover, examining 

recall metrics reveals significant effectiveness. The 

training set exhibited a recall of 99.32%, while the test 

set maintained 94.74%. These results suggest the model’s 

proficiency in capturing the majority of positive 

instances without missing many, highlighting its 

consistent performance on unseen test data. 

The model’s ability to generalize without overfitting 

is evident, showing consistent predictive power across 

various datasets. Figure 5 further illustrates the evolution 

of these metrics across epochs, depicting a rapid decrease 

in training and validation loss from the initial epochs, 

eventually converging to minimal values with a slight 

gap between the two losses. This presents an efficient 

learning ability of the proposed network. 

The implementation of the proposed automatic fault 

detection method carries profound implications for 

machinery productivity and cost-effectiveness. By 

prioritizing the minimization of false-negative results, 

especially in the context of fault detection within 

excavators, this method significantly mitigates the risk 

associated with undetected faults. Such oversights can 

lead to operational disruptions, downtime, and potential 

safety hazards, all of which can incur substantial costs 

and impair machinery productivity. 

By ensuring the timely identification and resolution 

of faults, the proposed method helps avert catastrophic 

failures that could result in extensive financial losses and 

pose risks to end-users. This proactive approach not only 

safeguards equipment integrity but also enhances 

operational efficiency by minimizing unplanned 

downtime and maintenance efforts. Moreover, the 

reliability, effectiveness, and accuracy demonstrated by 

this model underscore its capacity to optimize machinery 

performance and reduce operational expenses. By 

providing early and precise fault detection capabilities, 

this method enables maintenance interventions to be 

strategically planned, thereby minimizing costly repairs 

and maximizing equipment uptime. 

  
a) Accuracy b) Precision 

 
 

c) Recall d) Model loss 

Figure 5. Results of the training and test process of the proposed CNN 
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In essence, the successful implementation of the 

proposed automatic fault detection method not only 

bolsters machinery reliability and safety but also 

translates into tangible benefits in terms of enhanced 

productivity and cost-effectiveness. Its robust 

performance positions it as a valuable asset for fault 

detection in excavators, offering significant potential for 

improving overall operational efficiency and profitability.  

Table 1. Results of the proposed CNN 

Dataset Accuracy Recall Precision 

Training 98.32% 99.32% 97.35% 

Test 89.33% 94.74% 85.71% 

6 Conclusion  

This paper presents a CNN-based network designed 

for excavator fault detection using audio signals. The 

sound of excavator operations is captured through a 

single microphone, and expert mechanics assist in 

diagnosing the excavators’ statuses. Both normally 

functioning excavators and those with faults are recorded, 

with subsequent data labeling based on the mechanics’ 

assessments. To address dataset imbalance, the SMOTE 

oversampling method is employed to balance the dataset. 

The extraction of frequency features from audio signals 

is accomplished through the generation of MFCC 

spectrograms. These spectrograms serve as input for the 

proposed CNN-based network. The evaluation of the 

network’s performance employs accuracy, precision, and 

recall metrics, demonstrating good generalization and 

robustness in excavator condition recognition. 

This study contributes to leveraging machine learning 

applications to improve excavator serviceability. The 

COVID-19 pandemic highlighted Singapore’s heavy 

reliance on foreign manual labor, resulting in significant 

downtime and project slowdowns. There is a growing 

consensus that a paradigm shift in site operations is 

necessary, especially considering the migration of talent 

to other sectors, potentially reducing expertise in this 

industry. Implementing machine learning could alleviate 

dependency on senior mechanics for fault identification. 

It could empower on-site engineers or workers to 

recognize fault-related sounds promptly, enabling 

immediate servicing to prevent excavator breakdowns. 

A limitation of this study lies in the range of its 

dataset. As previously mentioned, audio data capturing 

excavator operations was acquired using a single 

microphone within a relatively quiet environment with 

minimal ambient noise. There is merit in extending the 

dataset to encompass a diverse range of real-world 

conditions, particularly those characterized by higher 

levels of background noise, to further validate the 

proposed method. Apart from gathering data from real-

world conditions, acquiring a comprehensive range of 

normal operation sounds holds significant value in 

enriching the dataset. This augmentation can enhance the 

rationality of fault diagnosis and provide additional 

support for anomaly detection, which presents itself as a 

potential avenue for future research exploration. 

Additionally, the data labeling process relied on expert 

input, which can be time-consuming and labor-intensive, 

particularly as the dataset expands. This process could be 

streamlined by implementing automated or semi-

automated labeling procedures.   

In terms of future research directions, a more granular 

classification of faults into major and minor categories 

could yield substantial insights. Moreover, an in-depth 

analysis of the network’s discriminatory capabilities 

across varied fault scenarios is warranted. Additionally, 

expanding efforts to correlate specific faults with their 

respective excavator brands, leveraging an augmented 

dataset, could enhance the network’s proficiency in 

accurately identifying excavator-specific faults. The 

inclusion of datasets spanning a broader spectrum of 

excavator models holds promise for enriching research 

outcomes. 
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