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Abstract 

Automated rebar cage assembly and quality 

inspection require reliable rebar recognition. 

Although rebar segmentation from point clouds has 

been extensively studied, its generalizability remains 

limited. One key challenge is the scarcity of real data 

for training the segmentation models. To address this 

issue, we propose, for the first time, a pipeline for 

generating synthetic data for the rebar point cloud 

instance segmentation task. Using this pipeline, we 

applied the state-of-the-art Oneformer3d on rebar 

mesh instance segmentation. The model trained on 

our synthetic dataset achieved 92.1 mAP in real-world 

experiments, showing strong synthetic-to-real 

transfer capability. By eliminating the need for 

manual data collection and annotation, the proposed 

method facilitates advancements in automated rebar 

cage assembly and dimensional quality inspection 

technologies. 
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1 Introduction 

The automation of rebar cage assembly and 

dimensional quality inspection has garnered significant 

attention in the construction industry due to its potential 

to enhance productivity and reduce labor costs [1]. 

Accurate rebar recognition is a key technology that 

enables the automation of the above tasks. It serves as a 

critical foundation for many downstream tasks, such as 

rebar manipulation based on pose estimation and the 

dimensional measurement of rebar cages. 

Existing studies have extensively explored rebar 

segmentation from images or point clouds to accurately 

identify the shapes and dimensions of rebars. Depending 

on the type of sensor data, these methods can be 

categorized into image-based rebar segmentation 

methods and point cloud-based segmentation methods. 

The advantage of the former lies in the ease of data 

collection and annotation and lower hardware costs. For 

instance, Kardovskyi et al. [2] applied the Mask R-CNN 

to segment rebars from images, which was then 

integrated with stereo vision techniques to measure rebar 

length and spacing. Chang et al. [3] present a hybrid rebar 

segmentation method to enable accurate rebar dimension 

measurement. This method first employs Mask R-CNN 

to segment rebars from images, followed by mapping the 

segmented results into 3D space, where point cloud 

processing techniques are used to cluster and identify 3D 

rebar instances. 

Compared to object segmentation from images, direct 

segmentation from 3D point clouds offers two significant 

advantages: (1) it enables end-to-end processing of point 

clouds from laser scanners, and (2) it leverages prior 

knowledge of objects' 3D shapes more effectively. 

Consequently, many studies have focused on rebar 

segmentation from 3D point clouds [4], [5], [6]. They all 

relied on point cloud processing techniques, leveraging 

prior knowledge of rebar shapes to segment point clouds 

from complex scenarios. For example, Kim et al. [7] 

proposed a method based on the line RANSAC method 

and circular RANSAC to efficiently identify straight 

rebars within rebar cages. However, relying solely on 

point cloud processing to identify rebars faces limitations 

in generalizability [3]. 

Deep learning-based point cloud instance 

segmentation has demonstrated remarkable performance 

in various computer vision tasks, such as indoor scene 

understanding [8] and industrial part dimension 

inspection [9]. They typically rely heavily on large 

quantities of annotated data for training [10]. However, 

such large-scale data in the context of rebar segmentation 

is still lacking [3], which directly hinders the 

advancement of rebar segmentation. Moreover, the labor-

intensive and time-consuming nature of manual 

annotation processes further exacerbates this challenge. 

Wang et al. [11] proposed a synthetic dataset using BIM 

and Lumion 11 rendering software, which contains 

automatically labeled 2500 synthetic images of rebar 

meshes. Mask R-CNN was trained and tested on their 

proposed dataset, showing high accuracy of bounding 
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box and mask prediction. However, to the best of the 

authors' knowledge, no point cloud dataset specifically 

designed for rebar instance segmentation has been 

proposed. Therefore, the applicability of advanced point 

cloud instance segmentation networks to rebar 

segmentation tasks also remains unexplored. 

To address these critical gaps, we first develop a 

synthetic data generation pipeline for generating 

synthetic point clouds. The pipeline simulates realistic 

rebar point clouds from image-based 3D reconstruction 

and their corresponding 3D labels, enabling the training 

of advanced segmentation networks without the need for 

manual data collection and annotation. Using the 

proposed synthetic dataset, we apply a state-of-the-art 

point cloud instance segmentation network to the real-

world task of rebar mesh recognition. The feasibility and 

accuracy of the developed pipeline are validated through 

real-world experiments. Additionally, the experiments 

show both the applicability and limitations of the state-

of-the-art method in rebar segmentation tasks.  

2 Method 

Point cloud instance segmentation networks typically 

require a substantial amount of training data to enable the 

model to effectively learn the visual and geometric 

features of target objects. Therefore, we developed an 

end-to-end data generation pipeline for rebar instance 

segmentation based on the modeling and rendering 

software Blender, as shown in Figure 1. This pipeline 

efficiently simulates 3D point clouds reconstructed using 

Structure-from-Motion (SfM) and Multi-View Stereo 

(MVS) algorithms and automatically generates labels. 

The proposed pipeline consists of three stages: (1) scene 

generation, (2) point cloud reconstruction, and (3) model 

training. 

2.1.1 Scene generation 

We first developed a parameterized modeling method 

using Blender and Infinigen [12]. The method can 

generate large-scale rebar models with diverse shapes 

and appearances. Specifically, Blender is used to model 

rebars, while Infinigen converts the parametric geometry 

nodes into executable code for batch processing. Figure 

2 shows different rebar models generated by our method. 

We use Cylinder primitives in Blender to represent 

straight rebar segments. To simulate different real rebars, 

our straight rebar model supports parameters required for 

typical design specifications, including rebar diameter, 

length, bending degree, and rib type. The rib structures 

are created using meshes, enabling high-fidelity and 

geometric details.  

To simulate different rebar appearances, we 

randomize visual parameters such as base color, metallic 

properties, roughness, and texture to randomize the 

visual appearance of the rebar models. Additionally, we 

use a combination of Noise Texture and Musgrave 

Texture nodes to simulate surface defects on rebars, such 

as stains and corrosion. 

 

Figure 1. Proposed pipeline for rebar instance 

segmentation 

By defining heuristic rules and graph structures, we 

can use automatically generated rebar models to establish 

various rebar cage configurations. In this study, we 

specify the positions and orientations of straight rebars to 

construct reinforcement mesh scenarios for slab 

production. For lighting, the approach of high dynamic 

range images (HDRI) is applied to illuminate the scenario. 

To capture a wide range of lighting conditions, 733 HDRI 

images are collected from the open-source asset library 

PolyHaven. 
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Figure 2. Examples of generated rebar models 

2.1.2 Point cloud reconstruction 

A straightforward method for generating point clouds 

from 3D scene models is to downsample the mesh 

directly to obtain the point cloud [13]. However, this 

approach struggles to effectively replicate the 

distribution of point clouds reconstructed from real 

images, leading to reduced segmentation accuracy [14]. 

To better simulate the point clouds derived from real 

image reconstruction, we sample cameras within the 3D 

scene and employ traditional SfM [15] and MVS [16] 

algorithms to generate synthetic point clouds. Blender's 

Cycles renderer is applied to generate photorealistic 

images of the scenarios. The Cycles renderer utilizes 

physically based ray tracing to simulate complex 

interactions between light, shadows, and material 

reflections. 

To accurately label the reconstructed point cloud reP , 

we first perform uniform downsampling on the rebar 

mesh model generated in the synthetic scenario, denoting 

it as GTP . Subsequently, we align reP  and GTP  by 

utilizing the camera poses estimated via SfM and the 

ground-truth poses of the virtual cameras. Based on this 

alignment, the nearest neighbor for each point in reP  is 

identified in GTP , allowing instance labels to be assigned 

to reP . 

2.1.3 Instance segmentation network 

A SOTA transformer-based instance segmentation 

network, Oneformer3d [17], was used for the instance 

segmentation model. The method achieved the best 

performance on three different benchmarks (ScanNet, 

ScanNet200, and S3DIS), and excels in scenarios 

involving slender objects like chair legs, which share 

similar geometric characteristics as with rebars. 

3 Experiment 

To evaluate the adaptability and performance of the 

developed pipeline, a large-scale synthetic dataset was 

first generated. This dataset was designed to be diverse, 

incorporating randomized rebar models, spacing 

configurations, lighting conditions, camera numbers and 

camera poses. Based on this dataset, we trained the state-

of-the-art point cloud instance segmentation model, 

Oneformer3d. To assess the model's syn-to-real 

generalization capability, real-world experiments were 

conducted on rebar mesh arrangements, simulating slab 

reinforcements that are commonly used in construction 

sites. 

3.1 Dataset generation 

Based on the proposed pipeline, a synthetic dataset 

containing 238 samples was reconstructed automatically, 

as shown in Figure 3(a-b). Each sample was annotated 

with detailed instance labels. The dataset was divided 

with an 8:2 ratio into a training set (190 samples) and a 

validation set (48 samples). 

To evaluate syn-to-real transfer performance, we 

arranged slab rebar meshes to collect real-world point 

cloud data. A smartphone was used to capture 48 to 79 

multi-angle images of each rebar placement, with a 

resolution of 4032 × 3024 pixels. The camera was 

positioned approximately 70 cm from the target. To 

introduce variability, we adjusted the number of rebars (8 

to 14) and their placement intervals (5 cm to 25 cm), 

aiming to challenge the algorithm and assess its 

robustness under diverse spatial configurations. The final 

test set comprises 12 manually annotated samples. Figure 

3(c-d) provides examples from our real-world test set. 

 

Figure 3. Examples of our synthetic training set 

and real-world test set: (a-b) synthetic training set; 

(c-d) real-world test set 
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3.2 Evaluation Metrics 

We evaluated the performance of the 3D rebar instance 

segmentation using mean average precision (mAP), a 

standard metric in point cloud segmentation. The mAP 

was computed as the average precision over Intersection 

over Union (IoU) thresholds ranging from 50% to 95% 

in increments of 5%. 

3.3 Training setting 

All training settings of Oneformer3d are basically 

following the original implementation [17]. For the 

learning rate, we used an AdamW optimizer with an 

initial learning rate of 0.0001 and weight decay of 0.05. 

Taking computational efficiency into account, we 

employed a batch size of 2 and constrained the training 

to 160 epochs. Furthermore, we have experimentally 

observed that the scale diversity of the point cloud can 

significantly improve the sensitivity of the segmentation 

network to the scale of the point cloud. Therefore, we 

applied a larger range of random scaling, from 0.5 to 1.5, 

compared to the original implementation. 

3.4 Results 

Figure 4 illustrates the progression of the mAP on the 

validation set throughout training. The trend indicates 

that training on our synthetic dataset is stable and 

effective, with no signs of significant overfitting. 

Oneformer3d demonstrates strong segmentation 

performance on the synthetic dataset, achieving the 

highest mAP of 99.4. When evaluated on the real-world 

test set, the model achieved a high mAP of 92.1, 

indicating its ability to generalize from synthetic training 

data to real-world scenarios. 

 

Figure 4. mAP variation with training epochs on 

the synthetic validation set 

Figure 5 presents several results obtained from the 

real-world dataset. The majority of rebar outputs exhibit 

high segmentation accuracy with clearly defined instance 

boundaries However, a few cases exhibit poor 

segmentation performance. For instance, as illustrated by 

the red arrows in Figure 5(c), two rebars were incorrectly 

merged into a single instance. This may be attributed to 

the global context awareness of transformer-based 

models, which, in rare cases, can lead to objects with 

similar features being recognized as the same instance. 

This merged detection is also noted in indoor object 

segmentation [18] using a similar transformer-based 

model with Oneformer3d. Employing a distance-based 

clustering filter, such as DBSCAN[18], enhanced by 

shape priors, offers a potential solution to mitigate this 

challenge.  

Additionally, missing points were observed in the 

segmentation results of certain rebars, as indicated by the 

blue circles in Figure 5(d). This can be attributed to the 

model's insufficient accuracy, particularly in handling 

incomplete edges in point clouds. This minor issue can 

be addressed using various post-processing techniques, 

depending on the downstream tasks. For instance, in the 

case of rebar 6D pose estimation, known geometric priors 

of the rebar can be utilized to accurately compute the 

pose even in the presence of missing points. 

 

Figure 5. Examples of segmentation results on our 

real-world test set 

4 Discussion 

This study demonstrates the adaptability of synthetic 

data for training the rebar point cloud instance 

segmentation model. This validates that the approach can 

generate reliable rebar visual and geometric features, 

enabling deep neural networks to effectively learn and 

recognize real-world rebars. Therefore, it is expected that 

the proposed pipeline can automatically generate 3D data 

for a wide range of rebar cages. For example, as shown 

in Figure 6(a), our pipeline can generate complex rebar 

cage point clouds and annotations. Besides, the pipeline 
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shows promise for training networks to estimate 6D 

poses and 2D masks of rebars from 2D images. 

Furthermore, synthetic models can be integrated into 

physical simulations to train reinforcement learning 

policies for dexterous rebar manipulation in future work, 

as illustrated in Figure 6(d). 

 

Figure 6. Our pipeline is promising to be extended 

in the future to: (a) 3D instance segmentation for 

rebar cage; (b) 6D pose estimation of rebars; (c) 

2D image segmentation; (d) Physical simulation 

This preliminary exploratory study has certain 

limitations. First, our point cloud segmentation 

experiments did not explicitly address the challenges 

posed by real-world variations, such as more complex 

rebar structures, occlusions, lighting conditions, and 

different scanner resolutions. While our synthetic dataset 

performs well in controlled settings, its generalization to 

diverse real-world environments remains an open 

question. Future work should focus on incorporating a 

broader range of 3D data that captures these variations, 

ensuring robustness across diverse rebar structures and 

scanning conditions. Additionally, while preprocessing 

techniques such as RANSAC [19], can effectively 

remove the ground, achieving end-to-end rebar 

segmentation in the presence of complex background 

interference using neural networks remains a valuable 

research direction. 

Second, the proposed method faces challenges in 

achieving real-time running in practice due to the high 

computational cost of the point cloud segmentation 

network and the offline nature of the reconstruction 

method. In the future, adopting 3D cameras directly, 

combined with real-time reconstruction and lightweight 

segmentation or keypoint detection from 3D point clouds, 

will be a promising research direction. Third, future work 

could focus on comprehensive benchmarking to identify 

the optimal network architecture for rebar point cloud 

segmentation and facilitate model selection in real-world 

applications. 

Finally, while this study focuses on demonstrating the 

effectiveness of synthetic data for rebar segmentation, a 

detailed ablation study on the impact of individual 

augmentation parameters, such as texture variations, 

occlusions, and lighting conditions, remains an important 

area for future work. 

5 Conclusion 

To address the challenge of lacking training data for 

rebar point cloud instance segmentation, we first 

developed a synthetic data generation pipeline. This 

pipeline enables high-fidelity annotated point clouds, 

facilitating the training of instance segmentation 

networks without the need for manual data collection and 

annotation. The adaptability of the pipeline was validated 

through a real-world experiment. The state-of-the-art 

point cloud instance segmentation network Oneformer3d 

trained on our synthetic dataset achieved a 92.1 mAP on 

the real-world test set, showing good syn-to-real capacity. 

This work contributes to the advancement of 

automated rebar cage assembly and dimensional quality 

inspection technologies, paving the way for the broader 

adoption of intelligent construction solutions. 
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