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Abstract -

The increasing complexity and uncertainty in construction
projects necessitate more efficient and adaptive construction
management systems. This research studies the automation of
the Last Planner System (LPS), a collaborative lean scheduling
tool, by integrating predictive strategies to enhance scheduling ac-
curacy, constraint resolution, and insights for decision-making. A
conceptual framework is proposed for LPS automation while also
representing the automation of LPS as an optimisation problem
and determining the core aspects of LPS, such as communica-
tion management, constraint management, and planning and
scheduling. This framework provides a foundation to which inte-
gration of predictive strategies in digitised Last Planner Systems
is possible, focusing on process improvement, delay mitigation,
and performance optimisation. A model that determines the
constraint resolution duration was presented. This model used
feature extraction techniques to determine constraint complexity
score and preprocessed other features such as priority, location,
and category to predict constraint resolution duration. The
results indicated a Mean absolute error of 21.38 days (MAE)
from the actual constraint resolution duration. Although the
outcome and model can help in constraint management towards
an automated LPS, the research identifies key limitations, in-
cluding challenges in dataset quality, unfavourable sample sizes,
and challenges with parsing complex textual and tabular data,
highlighting areas for improvement. Future research should
prioritise exploring emerging techniques, such as Table parsing
(TAPAS) and Retrieval-augmented generation (RAG), to enhance
the integration of data-driven strategies into Last Planner System
workflows.
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1 Introduction

In the face of increased complexities and uncertainties of
projects in the construction sector, more efficient and intuitive
project controls, planning, and scheduling systems are highly
sought. Pressing factors contributing to inefficiencies in ex-
isting systems include inadequate management of constraints,
communication, and lack of adaptability in scheduling and
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project control systems [1]. However, automatically classify-
ing constraints, intuitively classifying project communication,
instantly generating insights, and detecting deviations in these
systems are crucial for navigating complex and high-risk
projects such that predictability is enhanced and project
outcomes are favourable [1, 2, 3]. To achieve this, a more
adaptive project management system (Last planner system) is
considered as prototyped by Ballard [4]. While existing project
control and scheduling systems have indicated significant
improvement in addressing inefficiency in project implemen-
tation, there remains a substantial gap for improvement in
ascertaining project status, instant generation of insights from
project trends, and ensuring predictable project outcomes
[5, 6]. From the first principle, a last planner system (LPS)
can, therefore, be represented as a combination of constraint
management system (CN), collaboration/communication
system (CB), and Planning and scheduling systems (PS),
where x..n is the increasing project instances of elements
contained that make each system functional;

LPS(x..n) > CN(x..n)+CB(x..n)+PS(x..n) (D

Improved efficiency in existing project control and schedul-
ing systems depends on the integration of digitised project
control and scheduling systems with other technologies and
methods such as lean systems, visual simulation, BIM, artificial
intelligence, AR VR, etc. [1, 5]. These integrations have been
proposed as solutions to identified fundamental limitations,
including unreliable schedules, unreliable data, manual pro-
cesses leading to errors, and overarching challenges of delay,
cost overrun, and reworks [7]. These challenges are expected
for most projects, especially in complex and high-risk projects
where project managers faced with trade-offs in cost, quality,
time, resources, changes, etc., have to rely on tacit knowledge,
experience, and intuition to make accurate decisions quickly
rather than relying on insights from analysed operation data
to draw conclusions and make data-driven decisions. Studies
have shown that although experience and tacit knowledge are
essential in managing projects, it is more reliable for businesses
to find data-driven paths to making operational decisions to
control current and future project outcomes [8, 9].

While predictive strategies can improve most of the existing
digitised project control and scheduling systems, this study
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aims explicitly to automate digital last planner systems. LPS is
alean and collaborative tool that provides short-term schedules
and lookahead information that enhances planning efficiency,
improves the reliability and accuracy of plans, enables the se-
lection of alternatives, and reduces time-space conflicts on con-
struction sites. The system pulls information from all forms of
communication regarding constraints, deviations, changes, etc.,
to determine tasks to be scheduled within specific lookahead pe-
riods. The benefits of LPS are evident in LPS-related research
sources, and an automated Last Planner System (LPS) has
been proposed to exert an even greater impact on construction
planning and implementation processes. [10, 11,7, 12, 13].

As part of the contribution of this research, this study
presents a streamlined flow for automating the digitised Last
planner system, considering all factors which enable it to be
fully functional. In achieving this aim, the study follows a
procedure that allows the identification of all relevant elements
and features of a last planner system, represents the system
as an optimisation problem and integrate predictive strategies
in one of the identified elements (constraint management).
Section 1 presents a summary of the conceptualisation of the
topic, and Section 2 analyses existing literature and discusses
the gaps and limitations. Section 3 presents the flow for the
proposed automated last planner system. Section 4 initialises
a basis for integration of artificial intelligence and presents
a representation of the problem mathematically. Section 5
showcases the predictive strategies and offers implementation
and discussion of results. finally, Section 6 and 7 discusses
the research outcomes, limitations and future works.

2 Literature Review

The last planner system (LPS) is a project control and
scheduling system created in the early 90s by Glen Ballard
[4]. Research highlights that LPS emerged by applying lean
construction (LC) principles in construction projects. It is
a system based on the need to enhance workflow reliability
by field workers implementing the task specified in planning
processes. Key elements of LPS identified from existing
research include 1) collaborative planning, 2) constraint
management, 3) hierarchy planning systems and levels, 4) pull
planning, and 5) continuous improvement [1, 3, 2].

Challenges of LPS were first discussed expansively by
Aslam et al., [7]. The shortcomings identified include
the inability to manage project variability correctly, lack of
visualisation of LPS capabilities, incorrect lookahead planning
and many more [14]. However, The conceptual framework
for integrated LPS included necessary features such as collab-
oration, constraint identification and communication methods,
which led to increased collaboration, improved visualisation,
risk analysis, continuous improvement, etc. The implemented
digitised LPS also has shortcomings, even though it is digitised.
These shortcomings include limited support and integration,
lack of consistency in planning and scheduling, inadequate real-
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Figure 1. Last planner transformation stages

time information, data management challenges, and limited
constraint management [2]. A comprehensively automated
digital LPS is expected to improve efficiency in all processes
and activities, enhance constraint management, allow real-time
data analysis and visualisation, allow knowledge reuse and
to improve collaboration and communication through stream-
lining processes and enhancement of information sharing.

Developing a workable automated planning system is
predicated on identifying all required base elements that make
the system automated, collaborative, and manage constraints.
Automation, as identified in existing research, is indicated
in 3 levels; the first level is research based on the digitisation
of LPS systems as against the manual forms [4]; the second
level is the research instances which developed linkages and
union nodes for BIM and digitised LPS as an upgrade to
overcome data homogeneity and enhance information sharing
[15, 16, 12]; the third level is the point where predictive
strategies and Al techniques are being integrated into digitised
LPS platforms to aid automation and streamline processes. [2]

A review study by Agrawal et al. [1] identified several
existing research where automated planning processes were
categorised into master and phase scheduling, lookahead
scheduling, weekly work planning and learning stage. Al-
though the study excluded actual automation of planning and
control in LPS, it systematically reviewed existing works. The
research identified research works which presented automation
in all three identified levels in Figure 1. Further reviews and
classification of related works are summarised in Table 1.

Overall, the early research by Ballard [4] has since been
transformed to become more encompassing from the manual
linear scheduling methods to the digitised methods. Then, the
digitised systems that link LPS with BIM are often integrated
for automation, allowing for improved scheduling of activities
and streamlining processes. Existing related research has
focused on other specific applications and stages of projects
but neglected the three core aspects of a functional LPS. This
is the gap which this study seeks to cover. More specifically,
automation in the Last Planner system has been applied
mainly in performance evaluation. A framework or prototype
of an integrated LPS system that considers all the factors and
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Table 1. An overview of existing literature

Sections Overview Stage Citations
Last planner sytems ;lg?ez&ncepl application manually using pilot Ist 4]
Schdeuling
Automation A systematic review of existing works. 11
Review
Master and Optimisation of buffer projects used varying

hase schedulin: optimisation techniques to achieve maximised 2nd [17,18,19]
g ety risk and 2 chhedub allol;:atiom . . ine BIM

afety, risk an onstraints that may impact projects using as
logistics constraints a source of information 2nd (20, 21]
Lookahead Automation-driven research which used

1 aﬁn?nca transformer models to predict lookahead and 2rd [22,3]
P g generate plans quickly
Constraints Identification and removal of constraints by first
management ggl&}%éisng integration between different data 3rd [23, 24,25, 26]

Used machine learning techniques to forecast and
Last planner predict performance using identified LPS-based 3rd 2]
system (performance)  performance indicators such as the Percent plan
complete (PPC) and other indicators.

Integrated last planner  helps smoothen the implementation process and 2nd [12,7, 13]

system IL! overcome the shortcomings identified in the LPS.

features of an LPS system appears non-existent, motivating
the need for this study.

3 Last planner system Automation

Project control and scheduling systems ensure the flow of
work and control the progress and outcomes of the projects.
As shown in Figure 2, a typical project will be guided by
a developed master schedule, which serves as input detail
to other scheduling stages, including phase scheduling,
lookahead, weekly work scheduling and daily scheduling.
Once the master schedule exists, LPS principles can be
integrated into processes, including short-term planning and
lookahead. Figure 2 contains the flow chart for logical
automation of Last Planner systems.

3.1 Lookaheads

In lookahead plans or short-term plans, determining what
tasks will be ready to start in a lookahead period is very
important. It can be based on the probability that all tasks
before this period are completed [27]. The probability of task
completion can be calculated using historical productivity rates.
Measuring the percentage of work completed (PPC) relative
to the time spent on a similar previous task provides a more
accurate estimate of productivity rates than relying on gener-
alised project or organisational productivity rates, as suggested
by Salama et al., [27]. Their method involves determining
performance based on forecasted productivity rates (using lin-
ear regression) and the remaining quantity of work. However,
this approach assumes that the same organisation’s employees
consistently perform the tasks across all projects, which is of-
ten untrue. In reality, various contractors frequently complete
tasks, each contributing to different aspects of the work. This
variability complicates accurately determining productivity
rates, especially on-site, where numerous contractors are in-
volved in diverse activities. Consequently, there is a pressing
need to maintain detailed performance data so that individual
contractors can evaluate their work completion speeds better.
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LPS Aspects For Al Integration

As described already in equation 1, an LPS, on a
fundamental basis, is a combination of three elements, which
include collaboration, constraints and planning systems. This
entities are further elaborated below;

AS in figure 3, the Project schedule contains a list of
tasks (LT) detailing the following features: Task Name TN;
.. TN,;, a unique identifier for each task. Location L; .. L,,,
the location identifier for each task. Trade: CT; .. CT,,
the construction trade responsible for each task. Scheduled
start and end dates: #,; and f.; for tasks TN;, Duration:
D, ;=t, i—ts i, the duration of each task.

Constraint Table (CN) contains project constraints and their
features: Constraint Name C; .. C,,, a unique identifier for
each constraint. Location L; .. L,,, location identifier where
the constraint exists. Trade CT; .. CT,,, the trade associated
with the constraint. Commitment start and end dates cts; and
cte;. Constraint resolution time D ; =cte;—cts;, the time to
resolve the constraint. finally, the tables LT and CN are linked
through the linked task names, which associates constraints
with corresponding tasks (TN;).

Problem Definition

Given the tables LT and CN, we aims to optimize the
inclusion of tasks (TL c LT) into a specified Lookahead Period
(LAP). The goal is to dynamically determine an optimal subset
of tasks while resolving associated constraints and efficiently
allocating resources, subject to the following conditions:

* Binary Decision Variables (x;); x; =1 if task i is included

in the Lookahead Task List (TL), and x; =0 otherwise.

Tasks left with status (ready) are well-defined for scheduling.

* All constraints are valid and removed for tasks ready for
scheduling.

* The Lookahead Period is defined by the Lookahead Start
Time (LAT) and Lookahead End Time (LATcpq).

* Tasks and constraints are resolved and aligned with resource
availability and stakeholder collaboration.
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Figure 3. Standard Data-frame of the schedules and constraints entities.

Objective Function

As given in the problem definition, the objective function
Z is to find the tasks TL in LT, which maximises Z.
amax Z =

Z Wi X 'Dt,i —A1-Pengons — A2 -Pencolab
ieTL

@

Where w; is priority weight for all tasks 7 (i.e., high = 3,
medium = 2, low = 1), D, ; is duration of all tasks x;, Pencons
is penalty for unresolved constraints and Pengjqp, 1S penalty for
unresolved collaboration conflicts. Z is subject to the PS con-
straints, CN constraints, CB constraints and dynamic updates.

Schedule PS: This entity entails planning for different
projects at all levels. Here, the critical dependencies,
sequences, lookahead and buffers are represented accordingly.
e Task Dependency Constraint: tasks must satisfy their

dependencies before being included in TL.

V(j —i)in dependencies.

©)

¢ Lookahead Time Period Constraint; Only tasks whose
durations overlap with the Lookahead Period (LAT gt to
LAT,q) are considered

ts;>tej,

ts,i ZLATstart, te,i SLATend

¢ Lookahead Duration Constraint; The total duration of se-
lected tasks must not exceed the Lookahead Duration (LAD)

in -D; ; <LAD )
ieTL

 Buffers: This justifies the necessary lack of periods needed
for selected tasks.
V(i—)) ©)

te,i+bufferi <ts,j»

Constraints CN: This entity manages issues and emerging
risks to enhance quicker constraint resolutions by teams and do-
mains for different projects. Sometimes, tasks are usually hard-
constrained. However, this component is primarily controlled
by responsible persons. Sometimes, the impediment may be

forced removed or managed to get the task completed. In the

event of force removal or manoeuvres, the system should be up-

dated to ensure the continuous correctness of scheduled tasks.

e Status constraint; The status constrain represents the
readiness indicator for each task x;, we introduce a binary
variable R;:

{1’
Ri=
09

» Resource Constraint; To ensure that the selected tasks do
not exceed resource limits for materials M and workers W.

if all constraints for task x; are resolved

otherwise

Z Xim; < Mayyailable (7
ieTL
in Wi < Wayailable ®

ieTL

* Space Constraint (S): Only tasks with available space for
the job are marked ready to be scheduled. i.e available
workspace Savail) must be sufficient for the selected tasks.

D %i+8i < Sty V1€ [LAT o LATena]
i€TL

&)

Collaboration CB: This entity represents communication
and cooperation among teams (planners, quality, design,
engineering, supply chain, etc.) and domains to pre-empt and
resolve potential conflicts and plan for projects to withstand
emerging risks.

For a given project schedule PS, N;k: Notes in LT and
CN tables are associated with task x; and constraint vector
k. CN;k: The k-th constraint vector in the constraint table.

The collaborative conflict for the Lookahead task list (TL)
is defined as:

Pencoin= Y » xi*(CN)-a(Ni k) (10)

i€TL s

Other than constraint CN, Each constraint type (e.g., safety,
design, quality) is explicitly modelled as a separate binary
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Figure 4. Model Architecture - Fully connected neural network

variable S f; i safety for task x;:

1, if constraint of type k for task i is resolved
Sfik= .
0, otherwise

Dynamic Updates

At each time change ¢ of a project, there are consequent
changes in the amount of work completed, PPC, constraints,
and communication, as these entities are not static but usually
evolving. Based on this, the updated Lookahead plan must
evolve. Hence, we perform rolling updates for every new
iteration as the final constraint to the objective function:

LATSH) =LATY) 4 AT

start

(11

Recompute lookahead plan task list TL dynamically. TL ac-
curacy lies in the accuracy of the data that is fed into the process.

Pr(y;)=1 if upcoming tasks;
TLaccuracy =7 CNx,=0  no constraint exist;
Pr(x,)=1 if previous tasks;

where x,, are work tasks x; before specific lookahead inter-
val and y; are WTs within the lookahead or short-term interval.
The performance indication will then be the range of deviation
of actuals from planned, estimated or predicted values.

5 Implementation

Asillustrated in Figure 5, advanced deep learning techniques,
including Table Parsing (TaPas), deep implicit layers, self-
querying mechanisms, and large language model (LLM) frame-
works such as Retrieval-Augmented Generation (RAG), repre-
sent pivotal architectures for enabling the digital integration and
automation of the Last Planner System (LPS) [28, 29, 30, 31].

5.1 Deep learning for ALPS

Deep learning DL, a subset of machine learning, utilises
advanced architectures such as Convolutional Neural
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Networks (CNNs) and Recurrent Neural Networks (RNNs) to
process and generalise complex data with high accuracy [32].
These models, known for scalability and pattern recognition,
are well-suited for enhancing project control and scheduling
within frameworks like the Last Planner System as indicated
in Figure 5. Also, deep implicit layers, which are an ordinary
differential equation technique that is able to represent
constant changes and understand multi-level reasoning as
needed in an automated last planner system (ALPS), would
be crucial for automation. It is noted that complex problems
such as one represented in Section 4, can be crunched into
a single fixed iteration formula, which can then guide LLMs
to make feasibility and multilevel reasoning solutions [33].

5.2 RAG for ALPS

Retrieval-augmented generation (RAG) enhances LLMs
by integrating data from external databases, enabling more
accurate and context-aware outputs. RAG operates through
three interconnected modules: the retriever, retriever fusion,
and generator[34]. RAG techniques are particularly effective
for automating text summarisation, question answering, in-
formation extraction, text classification, etc. In the context of
ALPS, RAG can significantly enhance processes by enabling
constraint classification, automating notifications and commu-
nication categorisation, and summarising extensive text data.
This integration offers a powerful tool for streamlining complex
workflows and improving project management efficiency.

LPS Major Elements

@ Self Querying

Deep Learning
Scheduling Mgt

- =]

Automated LPS

Tapas
cep ImpIict Layers

Constraints Mgt

Adaptive automation techniques

Figure 5. LPS - Al integration
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5.3 Towards ALPS: Constraint Resolution prediction

The potential for improved augmentation can be sig-
nificantly enhanced through the integration of predictive
strategies in digitised LPS, and the aspects that this integration
can impact are enormous. In terms of application, we only
looked at ascertaining the resolution duration for constraints,
which is an integral aspect of ALPS.

5.3.1 Data

VisiLean, a major cloud-based construction management
software, supplied constraint and schedule data for major
ongoing projects. Facts and details of the project are
withdrawn for privacy reasons. A total of 173 constraints of
a large multi-stage developmental project are contained in the
dataset, and the data is framed as in Figure 3 and analysed.
A sample of the constraint and notes can be seen in Figure 6.

5.3.2 Process

To build a model that predicts constraint resolution duration,
we used the constraint dataset. This data was analysed using a
cloud-based Python IDE called Collab. First, preliminary data
preprocessing was carried out to understand the essential fea-
tures needed for the model. The unnecessary columns in our
dataset were dropped, and constraint resolution duration for all
constraints was calculated by determining the duration between
the date of constraint resolution and the date of constraint
creation. As indicated in Table 2, complexity score, which de-
picts the difficulty level of a constraint, was determined using
keywords, named entity recognition NER, deadline detection,
sentiment analysis and structural features, including the length
of constraints. After this, both textual and numerical columns
were preprocessed. This step regularised the dataset for accu-
rate model training purposes. The final set of features used
for training these models includes TDIF vectorisation of com-
bined textual data (Constraint title, description, notes and linked
tasks), priority, and Trades. The model architecture is indicated
in Figure 4. Afterwards, the created model was evaluated and
accessed in the following section. The model is simplified with
reduced layers, removed dropouts, and batch normalisation to
allow the model to map the complexity of the small datasets
fully. Epoch was set to 50, and batch size was reduced to 4
to optimise weight updates and better utilize limited data.

Table 2. Complexity score calculation

Feature S Y

NER

Keywords
Sentiment Analysis
Structure

Length combined
Presence of dates
Counts of keywords

This recognises named entities via SpaCy
keywords are classified based on complexity -critical and mild
Scoring based on perceived negativity or positivity.

Words depicting dependencies signifies complexity eg and, but etc.
Length of character of the combined textual data
dependency, date or deadline count
Number of keywords, dependencies per constraints

6 Results

The results of the fully connected neural network model are
shown in Table 3. The model predicts constraint resolution du-
ration, and the output is explained here. The average duration
error or variance for each of the test instances was determined as
23.18 days (MAE), and the standard deviations of each of the er-
ror instances in our datasets, indicating effectively the deviation
of the actuals from the target variable is 30.12 days (RMSE).

Table 3. Fully connected neural network results
Model MAE MSE RMSE
Neural Network (MLP) 23.18 907.22 30.12

Figure 7 indicates the results plot. These plots, the RMSE
and MAE values, indicate that the model overall might not
be fully capturing the patterns in the data. Although the target
variable is a variable with increased variability and the dataset
size is small, the model will keep improving as it is trained
on more data. The model can help automate the last planner
system as it will assist in pre-empting when constrained jobs
can be rescheduled or included in certain lookahead

Table 4. Error comparison using other models

Model MAE MSE RMSE
VR i . .

LightGBM 2343 104846 32.38

Random Forest 24.06 1108.12 33.29

7 Discussions and Limitations

In further discussion and comparison of the results in Ta-
bles 3 and 4, it was discovered that the support vector regression
SVR achieves a slightly lower MAE of 21.78 days but exhibits
a comparable RMSE of 30.59 days, indicating that SVR has
a lower deviation from the ideal when compared with neural
network model. On the other hand, the lightGBM and random
forest models display higher absolute error values (MAE: 23.43
and 24.06 days), suggesting that they are unable to map the pat-
terns in the data as much as SVR or the Neural network model.
This higher error variability is also replicated in the RMSE val-
ues, indicating that neural network models perform relatively
better. Although SVR is not completely outperformed in terms
of MAE by the neural network model, the neural network
model maintains a competitive RMSE, signigfiying its ability
to generalise despite the small dataset and variability in target
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variable. Furthermore, as the dataset expands, the neural net-
work has greater potential for improvement through training
and hyper-parameter tuning. The plots in Figures 7a and 8a
showcases the prediction of each constraint instance to the
ideal with specific improvement in predictions especially when
plots of both neural network and SVR are weighed side by side.

While this work highlighted the core aspects of LPS
where automation can be applied, the potential for automated
constraint management systems, automated collaborative
systems, and automated scheduling systems all integrated
into one system will increase the efficiency and accuracy
of the Last Planner system. To initiate this ambitious
research concept, the study conceptualized the system as an
optimization problem, which can be reformulated into a fixed
iterative equation, such as a gradient descent operation. This
equation can subsequently be integrated as a constraint within
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a large language model (LLM) to facilitate the generation of
accurate semantic queries and the determination of feasible
solutions for lookahead scheduled tasks. Secondly, an analysis
of constraint data of major ongoing projects to determine
constraint or conflict resolution time will be handy in quick
insight generation and accuracy of Lookahead tasks. However,
certain limitations were evident throughout the study.

* The dataset revealed several instances where the
creation_date and committed date occurred after the
completion date, presenting a distorted representation of the
actual outcomes. This discrepancy primarily arises from
the fact that actual data inputs are often recorded not for
process improvement or performance evaluation but rather
merely to fulfil reporting requirements. Such limitations
hinder the model’s ability to generalise effectively over the
training dataset, as many data inputs exhibited either zero
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or negative values for constraint resolution time.

* The available dataset was relatively small in size. In cases
involving larger datasets, the model would likely demon-
strate improved predictive capability regarding constraint
resolution durations, thereby minimising associated errors.

* The textual data utilised in the analysis, which includes
fields such as Constraint._title, Description, Notes, and
Linked_tasks, exhibited a variety of named entities and struc-
tural inconsistencies. These variations complicated the anal-
ysis of constraint complexity and hindered the appropriate
feature engineering necessary for enhancing model accuracy.

7.1 Recommendations and Implications for Practitioners

While the ideas presented in this research are still evolving,
they can be viewed as an augmentation of the Last Planner
System (LPS) rather than a complete automation of last
planners. This is reflected in the title: Towards Automation
of the Last Planner System. The first concept focuses on
optimizing the scheduling management system to categorize
the most suitable list of tasks for specific look-ahead periods
while considering existing constraints and communication
dynamics.  Although the optimization was evaluated
mathematically, the proposed LPS-AI framework suggests
employing methods such as Retrieval-Augmented Generation
(RAGs), TAPAS, Deep Implicit Layers, Deep Learning, and
self-querying to automate the entire Last Planner System.

The second concept involves predicting constraint resolution
durations. This predictive model assists in determining the
period within which specific constraints will be resolved. As a
result, it facilitates the scheduling of optimized look-ahead tasks
by providing foresight into constraint resolution timelines. Tra-
ditionally, in the absence of such models, planners and foremen
have had to replan and reschedule tasks at the beginning of each
work period due to their inability to anticipate constraint res-
olution times, thereby losing valuable productive work hours.

Although the target variable exhibits high variability and the
dataset is currently limited, the model is expected to improve as
it is trained on more data. By preemptively identifying when
constrained tasks can be rescheduled or incorporated into
specific look-ahead plans, this model contributes to automating
the Last Planner System and enhancing workflow efficiency

7.2 Future Work

Overall, the limitations are pointers to what must be done to
achieve either an augmented system or a self-sufficient system
that can rely on information at hand to generate accurate
lookahead schedules for desired periods. The quality of the
generated actual data is very important, and a structured list
of possible constraints and tasks should be adhered to. This
will help analysis and integration easily. While the problem
is dynamic, as highlighted in the definition of the optimisation
problem, constrained iterations with implicit and explicit

functions would be coded into an LLM as constraints for
outputs in a RAG structure to improve and augment the existing
LPS. Also, improved research on table parsing (TAPAS) to map
and understand complex linked tables with several rows would
advance the possibility of augmentation of last planner systems.

8 Conclusion

This research highlights the potential for automating the Last
Planner System (LPS) by integrating advanced Al techniques
to enhance constraint management, scheduling, and collab-
oration. Rather than aiming for full automation, the proposed
framework augments the Last Planner System by optimizing
lookahead scheduling and predicting constraint resolution
durations. By framing LPS as an optimization problem, this
study explored the use of deep learning, Retrieval-Augmented
Generation (RAG), Large Language Models (LLMs), and pre-
dictive modeling to improve decision-making and efficiency.

One key contribution of this research is the introduction of a
predictive model that estimates constraint resolution durations,
thereby enabling more proactive scheduling of lookahead
tasks. Traditionally, foremen and planners face challenges
in anticipating when constraints will be resolved, leading
to frequent replanning and inefficiencies. By leveraging
Al-driven predictions, this study lays the foundation for
reducing uncertainty and minimizing lost productive hours.

Despite its promise, limitations such as dataset incon-
sistencies, small sample sizes, and challenges in complex
table parsing highlight areas for further development. To
overcome these challenges, future research should focus on
refining the optimization representation into a constrained
iterative framework, embedding implicit and explicit functions
into LLM structures for better integration within RAG
architectures.  Additionally, improving structured data
collection processes and enhancing table parsing techniques
(e.g., TAPAS) will be critical in augmenting LPS capabilities.

By addressing these gaps, this research paves the way
for an Al-augmented Last Planner System that enhances
construction workflow efficiency, improves predictability, and
ultimately transforms project planning in complex, dynamic
environments.
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