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Abstract -
Automated crack detection plays a critical role in infras-

tructure maintenance and safety assessment. The detection
and segmentation of concrete and pavement cracks present
substantial technical challenges. These challenges stem from
the inherent complexity of crack morphology, environmen-
tal lighting variations, and the textural similarities between
cracks and their surrounding surfaces. In this paper, we in-
troduce a novel segmentation algorithm named EA-YOLOv8
to address two critical gaps in current crack detection tech-
niques. The first gap involves limited spatial information
utilization. To solve this, we integrate the Efficient Local At-
tention (ELA) mechanism into the YOLOv8 architecture’s
Bottleneck structure. ELA enhances spatial feature extrac-
tion without compromising computational efficiency or chan-
nel information. This approach directly tackles the challenge
of precise crack localization. The second gap relates to im-
precise crack boundary detection. We develop an adaptive
region-specific loss (ARS loss) that specifically targets the
complexities of crack edge delineation. Traditional loss func-
tions often fail to capture the nuanced boundaries of mi-
croscopic cracks. Experimental validation of EA-YOLOv8
was conducted on the Roboflow crack dataset. Through
ablation studies and baseline comparisons with YOLOv5,
YOLOv8, and the latest YOLOv11, the experimental results
show the superior performance of EA-YOLOv8. In terms of
results, EA-YOLOv8 improved precision by 10% compared
to YOLOv5 and the latest YOLOv11, and increased preci-
sion by 5% over the original YOLOv8. These experimental
findings validate the theoretical framework and practical ap-
plicability of our proposed EA-YOLOv8 in crack detection
scenarios.
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1 Introduction
Infrastructure has experienced extensive environmen-

tal erosion and service load increases during recent
decades. These factors significantly impact structural
safety throughout the infrastructure lifecycle. Concrete
and pavement cracks represent fundamental indicators of
structural health conditions [1]. Precise and timely crack
detection remains essential for infrastructure maintenance
and public safety assurance.

∗Corresponding author

The advancement of inspection technologies has trans-
formed crack detection methodologies. Manual inspec-
tion methods maintain widespread application but exhibit
limitations in labor requirements, time consumption, and
subjective variations [2]. The integration of optical tech-
nologies with deep learning algorithms provides enhanced
automated solutions for crack detection [1, 3]. While
YOLO networks have shown potential in crack detection,
existing methods still struggle with fundamental limita-
tions [4, 5].

The primary challenges in current crack detection tech-
niques include: Crack morphology presents extreme com-
plexity. Cracks exhibit irregular patterns with dramatic
variations in width and length, making feature extraction
highly difficult [2, 6]. Most existing deep learning models
fail to capture the nuanced characteristics of these struc-
tural irregularities.Background and crack region imbal-
ance creates significant segmentation challenges. Current
algorithms struggle to distinguish subtle crack boundaries
from surrounding surface textures. This limitation leads
to inaccurate detection, especially in regions with complex
surface conditions. Boundary detection precision remains
a critical weakness. Existing models typically cannot ac-
curately delineate crack edges, particularly in areas with
minimal contrast or complex surface textures.

To address these critical gaps, we developed EA-
YOLOv8, an advanced segmentation algorithm with two
key innovations. First, we integrated the Efficient Lo-
cal Attention (ELA) mechanism to improve spatial feature
recognition. ELA enables more precise crack localiza-
tion by dynamically distributing attention weights across
different image regions. This approach overcomes the
traditional limitations in feature extraction. Second, we
designed an Adaptive Region-Specific Loss (ARS loss)
function specifically targeting crack boundary detection
challenges. This innovative loss function enhances the
model’s ability to differentiate crack edges from back-
ground regions during training. By focusing on the most
challenging detection areas, ARS loss significantly im-
proves edge detection precision.
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Experimental validation on the Roboflow crack dataset
demonstrates the substantial improvements of EA-
YOLOv8. Compared to existing methods, our approach
increased precision by 10% over YOLOv5 and the latest
YOLOv11, and improved performance by 5% compared
to the original YOLOv8. These results validate the theo-
retical contributions and practical utility of our method in
infrastructure crack detection.

2 Related Work
Advancements in deep learning has created substantial

opportunities in complex detection tasks. Its application
in crack detection demonstrates extensive implementation
and profound impact. The field has witnessed numerous
research achievements that establish the foundation for
technological progression.

N.A.M. Yusof et al. [1] implemented convolutional
neural network (CNN) methodologies for concrete crack
classification. Their research validated the discriminative
capabilities of deep learning in crack detection applica-
tions. Liu et al. [2] developed an enhanced deep con-
volutional neural network incorporating deep supervision
mechanisms. This approach addressed segmentation ac-
curacy limitations in complex environments and improved
fine crack detail capture. Hassan Hosseinzadeh et al. [3,
7] utilized the YOLOv5 framework for pavement crack
detection and segmentation. Their methodology achieved
precise crack characterization while maintaining compu-
tational efficiency, addressing practical requirements in
road maintenance applications. Similarly, Yin et al. [7, 8]
implemented the YOLOv3 network for automated defect
detection in municipal drainage systems. Their system
detected six types of defects including cracks, achieving
a mean average precision of 85.37%. This work demon-
strated the practical application of deep learning in in-
frastructure maintenance, particularly for sewer pipe in-
spection where thousands of kilometers of CCTV footage
require analysis. Some recent research has focused on
minimizing the annotation burden for sewer defect detec-
tion [9, 10]. For example, a framework utilizing weakly
supervised object localization for automated sewer defect
detection was developed by Yin et al. [10], achieving high
localization accuracy while requiring minimal annotation
effort compared to traditional supervised approaches.

Current deep learning models exhibit specific limita-
tions in crack detection applications. These limitations
manifest in edge detection precision and fine-grained seg-
mentation capabilities, particularly when processing irreg-
ular crack morphologies and complex background condi-
tions. Crack characteristics, including width variations,
morphological complexity, and environmental interac-
tions, present significant challenges for accurate boundary
delineation and feature extraction. Addressing annotation

challenges in infrastructure inspection, Yin et al. [9] ap-
plied Weakly Supervised Object Localization (WSOL) for
sewer defect detection using only image-level labels. Their
approach achieved mean MaxBoxAccV2 scores of 64.33%
with ResNet-50 backbone and established a benchmark for
weakly supervised learning in infrastructure applications,
eliminating the need for labor-intensive bounding box an-
notations while maintaining high classification accuracy.

Research efforts focus on architectural optimization
strategies to address these technical limitations. Xi-
ang et al. [7, 11] integrated Transformer modules into
YOLOv5 architecture. The self-attention mechanism en-
hanced long-range dependency capture and contextual un-
derstanding within crack regions, expanding model de-
tection capabilities. Dong et al. [4, 7] incorporated
the Convolutional Block Attention Module (CBAM) into
YOLOv5. This modification enabled adaptive attention
distribution across feature dimensions, improving crack
feature focus while reducing background interference. Liu
[1] enhanced the DeepLabV3+ network through Dual At-
tention Module integration and HDD loss implementation.
These modifications strengthened feature emphasis and
optimized edge detection performance, advancing crack
detection methodologies.

Contemporary research demonstrates that architectural
enhancement through specialized modules and loss func-
tions represents an effective approach for performance im-
provement. This study implements the Efficient Local
Attention (ELA) mechanism [12] and Adaptive Region-
Specific Loss (ARS loss) [11] within the YOLOv8 frame-
work. Systematic ablation experiments validate the
model’s effectiveness. The research provides enhanced
solutions for crack detection applications, contributing to
technological advancement in this domain.

3 EA-YOLOv8

3.1 Overview

To improve the performance of crack segmentation, we
introduce two architectural improvements to YOLOv8.
The first modification integrates the Efficient Local Atten-
tion (ELA) mechanism into the C2F module. This integra-
tion creates the C2ELA module for crack feature extrac-
tion enhancement. The second modification implements
Adaptive Region-Specific Loss (ARS loss) within the seg-
mentation component. ARS loss operates in conjunction
with BCE Loss for crack boundary localization. These
improvements enhance the segmentation performance of
the base architecture. Figure 1 depicts the architecture of
the proposed EA-YOLOv8 framework.
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Figure 1. The network architecture of EA-YOLOv8

3.2 Efficient Local Attention (ELA)

We introduce the operational mechanisms of ELA (Effi-
cient Local Attention) for crack recognition in this section.
Figure 2 illustrates the structural architecture of ELA. ELA
utilizes strip pooling operations for coordinate informa-
tion extraction. The pooling process extracts horizontal
and vertical features from input feature maps. This di-
rectional processing method enables orientation-specific
pattern recognition. Crack features demonstrate distinct
directional properties. The coordinate extraction mech-
anism captures feature variations along crack extension
directions. This process establishes detailed morphologi-
cal analysis capabilities.

The architecture deploys 1D convolution for bidirec-
tional positional enhancement. Unlike standard 2D con-
volutions that process pixels in all directions simulta-
neously, 1D convolution works like a signal filter that
processes information along a single dimension (either
horizontal or vertical). This approach is similar to how
radar systems scan in specific directions to detect ob-
jects. 1D convolution has demonstrated computational
efficiency advantages over 2D convolution operations, re-
quiring fewer calculations while still capturing essential
directional information. This convolution method inte-
grates directional features and maintains spatial continuity
information, helping the model ”connect the dots” when
detecting elongated crack structures.

ELA incorporates Group Normalization (GN) [13] for
feature distribution stabilization. In simple terms, GN
works like adjusting the contrast of different parts of an im-
age separately to ensure all important details remain visible
regardless of lighting conditions. Environmental factors
in crack images introduce feature value variations. These
factors include illumination conditions and background
complexities. GN [13] executes group-based feature nor-

Figure 2. The structure of Efficient Local Attention.

malization procedures. This normalization method re-
duces environmental interference effects. The stabilized
feature distributions support consistent pattern recognition
during model training.

The integration of ELA into YOLOv8’s architecture
is implemented by replacing the C2f modules with our
proposed C2ELA modules. The bottleneck structure in
YOLOv8’s C2f module performs feature extraction oper-
ations through convolutional processing and residual con-
nections. Our implementation embeds the ELA mech-
anism within this Bottleneck structure according to the
following steps:

• We initialize the model with pretrained YOLOv8
weights from Ultralytics.

• The bottleneck components within C2f are identified
and modified to include ELA.

• Each bottleneck module processes the input through
a 1 × 1 convolution to reduce channel dimensions.

• The ELA placement occurs after these convolutional
layers but before the residual connection.

• The output from ELA is then passed through another
1 × 1 convolution to restore channel dimensions.

• Finally, a residual connection adds the original input
to the processed features.

This architectural arrangement optimizes feature pro-
cessing capabilities for crack detection. Figure3 presents
the C2ELA module configuration. The structural inte-
gration combines ELA and Bottleneck functionalities, en-
hancing the model’s ability to capture the distinctive direc-
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Figure 3. The structure of C2ELA.

tional patterns of cracks while maintaining computational
efficiency.

3.3 Adaptive Region-Specific (ARS) Loss

We propose the Adaptive Region-Sensitive Loss (ARS-
Loss) mechanism, which employs Tversky Loss [14] for
sub-region computation. This approach surpasses tradi-
tional Dice Loss limitations through parameters 𝛼 and 𝛽,
which regulate false positive (FP) and false negative (FN)
penalties. The formulation is expressed as:

𝐿𝑇𝑣𝑒𝑟𝑠𝑘𝑦 = 1 −
∑

𝑖∈𝑉 𝑝𝑖 · 𝑔𝑖 + 𝜀

𝑦
(1)

𝑦 =
∑︁
𝑖∈𝑉

𝑝𝑖 ·𝑔𝑖 +𝛼
∑︁
𝑖∈𝑉

𝑝𝑖 (1−𝑔𝑖) + 𝛽
∑︁
𝑖∈𝑉

(1− 𝑝𝑖) ·𝑔𝑖 +𝜀 (2)

The equation incorporates specific variables: 𝑝𝑖 repre-
sents pixel-wise crack probability prediction, 𝑔𝑖 denotes
corresponding ground truth labels, 𝑉 specifies the sub-
region pixel set, and 𝜀 maintains numerical stability.

The core innovation of ARS-Loss lies in its adaptive
parameters that evolve according to regional error distri-
butions through:

𝛼Adaptive = 𝐴 + 𝐵 · 𝐹𝑃

𝐹𝑃 + 𝐹𝑁
(3)

𝛽Adaptive = 𝐴 + 𝐵 · 𝐹𝑁

𝐹𝑃 + 𝐹𝑁
(4)

The ARS-Loss implementation follows a systematic
procedure integrated with the YOLOv8 framework:

1) Forward Pass and Feature Extraction: Input images
are processed through the YOLOv8 backbone and neck,
generating feature maps at different scales.

2) Segmentation Head Processing: The segmentation
head transforms the feature maps to produce prediction
probability maps 𝑃 ∈ R𝐻×𝑊 , where each pixel value 𝑝𝑖 ∈
[0, 1] represents the probability of belonging to the crack
class.

3) Region Subdivision: Both prediction maps and
ground truth labels are subdivided into a regular grid struc-
ture of 16×16×16 (width × height × channels) sub-regions.
This subdivision is implemented as follows:

a. For an input of size 𝐻 × 𝑊 , we compute region
dimensions 𝑟ℎ = 𝐻/16 and 𝑟𝑤 = 𝑊/16

b. Each sub-region 𝑅𝑚,𝑛 covers pixels from indices
(𝑚 · 𝑟𝑤 , 𝑛 · 𝑟ℎ) to ((𝑚 + 1) · 𝑟𝑤 − 1, (𝑛 + 1) · 𝑟ℎ − 1)

c. The grid structure creates 256 sub-regions, enabling
localized error analysis

4) Sub-region Error Analysis: For each sub-region
𝑅𝑚,𝑛, we compute:

a. False Positives (FP):
∑

𝑖∈𝑅𝑚,𝑛
𝑝𝑖 · (1 − 𝑔𝑖)

b. False Negatives (FN):
∑

𝑖∈𝑅𝑚,𝑛
(1 − 𝑝𝑖) · 𝑔𝑖

c. True Positives (TP):
∑

𝑖∈𝑅𝑚,𝑛
𝑝𝑖 · 𝑔𝑖

5) Adaptive Parameter Calculation: For each sub-region
𝑅𝑚,𝑛, the adaptive parameters are calculated as:

a. 𝛼𝑚,𝑛 = 0.3 + 0.7 · 𝐹𝑃𝑚,𝑛

𝐹𝑃𝑚,𝑛+𝐹𝑁𝑚,𝑛

b. 𝛽𝑚,𝑛 = 0.3 + 0.7 · 𝐹𝑁𝑚,𝑛

𝐹𝑃𝑚,𝑛+𝐹𝑁𝑚,𝑛

6) Sub-region Loss Computation: The Tversky loss
for each sub-region is calculated using the region-specific
adaptive parameters:

𝐿𝑇𝑣𝑒𝑟𝑠𝑘𝑦 = 1 −
∑

𝑖∈𝑉 𝑝𝑖 ·𝑔𝑖+𝜀
𝑦

𝑦 =
∑

𝑖∈𝑉 𝑝𝑖 · 𝑔𝑖 + 𝛼
∑

𝑖∈𝑉 𝑝𝑖 (1− 𝑔𝑖) + 𝛽
∑

𝑖∈𝑉 (1− 𝑝𝑖) ·
𝑔𝑖 + 𝜀

7) Total Loss Aggregation: The overall ARS-Loss is
computed as the mean of all sub-region losses:

𝐿𝐴𝑅𝑆 = 1
256

∑15
𝑚=0

∑15
𝑛=0 𝐿𝑚,𝑛

8) Loss Integration with YOLOv8: The ARS-Loss is
integrated with the standard YOLOv8 loss components:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆𝑏𝑜𝑥 · 𝐿𝑏𝑜𝑥 + 𝜆𝑐𝑙𝑠 · 𝐿𝑐𝑙𝑠 + 𝜆𝐴𝑅𝑆 · 𝐿𝐴𝑅𝑆

where 𝜆𝑏𝑜𝑥 = 0.05, 𝜆𝑐𝑙𝑠 = 0.5, and 𝜆𝐴𝑅𝑆 = 1.0 are
weighting coefficients determined through ablation studies
to balance the different loss components.

9) Backpropagation and Weight Update: During the
backward pass, gradients are computed with respect to
the total loss. The adaptive nature of ARS-Loss ensures
that regions with higher FP receive stronger penalties for
false positives (higher 𝛼), while regions with higher FN
receive stronger penalties for false negatives (higher 𝛽).
This region-sensitive adaptation guides the model to focus
on challenging areas with imbalanced error distributions.

The implementation of ARS-Loss starts with the pre-
trained YOLOv8 model (weights from Ultralytics) and
modifies the loss computation module while maintaining
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the original network architecture. This approach requires
minimal changes to the YOLOv8 framework, making it
easily applicable as a drop-in enhancement for crack seg-
mentation tasks.

The region-sensitive methodology enhances feature dis-
crimination capacity and crack boundary detection preci-
sion by dynamically adjusting penalties based on local
error characteristics. This is particularly effective for thin
crack structures where traditional global loss functions
often struggle to provide sufficient gradient signals.

4 Experiments
4.1 Dataset and Implementation details

The experimental dataset consists of the Roboflow
Crack Segmentation Dataset. Roboflow developed this
public dataset for traffic and infrastructure safety research
applications. The dataset incorporates 4,029 static images
from road and wall environments. Each image contains
pixel-level annotations. The image collection represents
multiple infrastructure conditions and crack characteris-
tics. The dataset supports comprehensive safety analysis
tasks.

The research implementation adopts Roboflow’s orig-
inal data organization. The dataset division follows the
provided training, testing, and validation partitions. Table
1 specifies the image distribution across these subsets.

Table 1. The dataset splitting of Roboflow Crack
Segmentation dataset.

Dataset Roboflow Crack Seg
Train 3717

Validation 200
Test 112

All experiments are conducted with an NVIDIA
GeForce RTX 4070 GPU (12GB VRAM). The model is
implemented with PyTorch1 2.4.1 framework running on
CUDA 12.6. Additional libraries include NumPy 1.26.3
for numerical operations and Ultralytics for YOLOv8 im-
plementation. All experiments are conducted with Python
3.10.14. The model initialization incorporates YOLOv8s-
seg pre-trained weights from Ultralytics. The training
configuration is concluded in Table 2.

Table 2. Hyperparameters for model training.
Parameter Parameter

Epoch 150 Momentum 0.937
Optimizer SGD Warmup Epoch 3

lr0 0.01 Warmup Momentum 0.8
lrf 0.01 Warmup Bias lr 0.1

1https://pytorch.org/

Table 3. Performances of various models on the
Roboflow dataset.

Precision Recall mAP50 F1
YOLOv5 0.75592 0.68675 0.68545 0.71968
YOLOv8 0.80325 0.6506 0.67648 0.718911

YOLOv11 0.75672 0.69478 0.65088 0.72442
ARS-YOLOv8 0.80307 0.66265 0.69921 0.726134
ELA-YOLOv8 0.83489 0.6506 0.69087 0.731313
EA-YOLOv8 0.85669 0.65462 0.70297 0.742146

5 Results and Discussion

This investigation was executed utilizing the Roboflow
dataset corpus. Our methodology encompasses a sys-
tematic evaluation between EA-YOLOv8 and preceding
YOLO variants: YOLOv5, YOLOv8, YOLOv11, ELA-
YOLOv8, and ARS-YOLOv8. The architectural design
of ELA-YOLOv8 incorporates the ELA attention mecha-
nism explicitly for feature extraction augmentation. The
ARS-YOLOv8 framework implements the ARS loss func-
tion specifically for optimization procedures. Statistical
metrics were acquired through methodological validation
protocols. The empirical results, as documented in Ta-
ble 3, elucidate the comparative analysis. The novel
EA-YOLOv8 architecture, synthesizing the ELA attention
mechanism and ARS loss function, manifests enhanced
detection efficacy compared to singular-component im-
plementations.

The experimental evaluation compares EA-YOLOv8
with the YOLOv5 baseline model. EA-YOLOv8 exhibits
performance enhancements across evaluation metrics.
YOLOv5 achieves baseline performance with 0.75592
precision and 0.68675 recall. YOLOv11, despite be-
ing the most recent architecture in the YOLO family,
achieves 0.75672 precision and 0.69478 recall, show-
ing only marginal improvement over YOLOv5 in crack
detection tasks. YOLOv8 and its architectural variants
demonstrate precision improvements. These results indi-
cate YOLO architecture progression.

Precision defines the ratio of correctly predicted pos-
itive samples (True Positives, TP) among total positive
predictions. EA-YOLOv8 achieves 0.85669 precision in
crack identification. This result surpasses both YOLOv5
(0.75592), YOLOv11 (0.75672) and YOLOv8 (0.80325)
baselines. The visualized results in Figure 4 column one
show detection errors in baseline models. EA-YOLOv8 re-
duces false detections through two mechanisms. The ELA
mechanism enhances directional feature extraction capa-
bilities. The ARS mechanism enables regional attention
optimization. These components reduce False Positive
(FP) predictions.

Recall represents the proportion of actual positive sam-
ples correctly predicted as positive (TP). EA-YOLOv8
achieves 0.65462 recall. While this is lower than
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Figure 4. Comparison of Each Model

YOLOv11’s recall (0.69478), which demonstrates the
highest recall among the baseline models, the third col-
umn in Figure 4 shows detection limitations in YOLOv8,
ELA-YOLOv8, and ARS-YOLOv8. EA-YOLOv8 com-
bines ARS loss regional weight adjustment with ELA fea-
ture extraction. This integration improves positive sample
detection.

Mean Average Precision (mAP50) evaluates model
performance in object detection tasks. EA-YOLOv8
achieves 0.70297 mAP50 ,which significantly outperforms
YOLOv11’s 0.65088 mAP50. The ELA mechanism ex-
tracts discriminative features. The ARS loss focuses on
challenging regions. These components enhance detection
accuracy across scales.

F1 score provides the harmonic mean of precision and
recall. EA-YOLOv8 achieves 0.742146 F1 score , surpass-
ing YOLOv11’s 0.724428 F1 score. This metric demon-
strates the effectiveness of ELA and ARS loss integration.

This research presents EA-YOLOv8 for crack detection
applications. The model integrates ELA attention mech-
anism and ARS loss function. Ablation experiments on
the Roboflow dataset validate model effectiveness. EA-
YOLOv8 demonstrates performance improvements over
YOLOv5, YOLOv11 and YOLOv8 baselines. The model
surpasses ELA-YOLOv8 and ARS-YOLOv8 variants in
precision, recall, mAP50, and F1 metrics.

6 Conclusion and Limitation
In this paper, we introduce a novel segmentation al-

gorithm named EA-YOLOv8 to incorporate two techni-

cal innovations into the YOLOv8 architecture. First, we
deploy the Efficient Local Attention (ELA) mechanism
following the final convolutional layer within the Bottle-
neck structure of the C2f module. ELA can optimize
spatial information utilization while preserving channel
dimensions and computational efficiency, resulting in im-
proved crack localization capabilities. Second, we de-
velop an adaptive region-specific loss (ARS loss) as an
auxiliary loss to specifically target the difficulties in crack
boundary delineation, leading to refined edge detection
results. Experimental validation of EA-YOLOv8 was con-
ducted on the Roboflow crack dataset. Through compre-
hensive ablation studies and baseline comparisons with
YOLOv5, YOLOv8, and the latest YOLOv11, the exper-
imental results demonstrate the EA-YOLOv8’s superior
performance. Quantitatively, EA-YOLOv8 exhibits a 10%
precision improvement over YOLOv5, a 10% improve-
ment over YOLOv11 and a 5% performance gain com-
pared to the original YOLOv8. While YOLOv11 demon-
strates slightly higher recall than EA-YOLOv8, our model
achieves superior precision, mAP50, and F1 scores, indi-
cating better overall performance for crack detection tasks.
These experimental results validate both the theoretical
framework and practical applicability of our proposed EA-
YOLOv8 in crack detection scenarios.

Research limitations require further investigation.
EA-YOLOv8 recall performance remains below ARS-
YOLOv8 levels. This indicates potential feature extrac-
tion misalignment between ELA and ARS loss compo-
nents. ARS loss weight adjustment mechanisms may ex-
perience constraints from ELA-generated features. These
interactions affect regional learning processes. Future re-
search directions include attention mechanism compati-
bility analysis with ARS loss. Additional investigation
of YOLOv8 detection head, feature pyramid, and SPPF
module modifications may enhance crack segmentation
performance. Furthermore, this study utilized only a sin-
gle dataset for training and testing. Future work should
incorporate multiple diverse datasets for cross-validation
to better verify the model’s reliability and generalizability
across different crack detection scenarios.
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