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Abstract –  

The quality inspection of adhesive of Exterior 
Insulation Finishing System (EIFS) is important 
because poor adhesive can lead to detachment of the 
insulation. Computer vision-based inspection stands 
out as a notable alternative. Recently, imaged-based 
deep learning model are widely used for the 
automated monitoring and inspection in construction 
field. To train the model, the relevant large datasets 
are essential. However, collecting datasets in the 
construction site is hazardous because of inherent risk 
of accidents. Also, synthetic datasets method which is 
one of alternatives to solve this problem are focused 
on fixed and regular shaped objects. To address these 
challenges, this study analyses the validity of synthetic 
datasets in terms of segmentation of adhesive in EIFS, 
which has irregular shape. For instance segmentation, 
the datasets were divided into two groups: (1) real 
datasets, composed of 100 actual photos, (2) mixed 
datasets, which combined 50 randomly sampled 
images from both synthetic datasets and real datasets. 
The mAP@50 of instance segmentation for real 
datasets and mixed datasets is 87% and 99%, 
respectively. This study prove that synthetic datasets 
can effectively train segmentation models, enabling 
the recognition of irregularly shaped objects and 
enhancing overall performance. 
 
Keywords – Synthetic datasets, Image-based deep 
learning, Instance segmentation, Exterior insulation 
finishing system 

1 Introduction 
Exterior Insulation and Finishing System (EIFS) is a 

method of covering the entire exterior of building. There 
are primarily two methods for applying EIFS: the dry and 
wet processes. The wet process, the most common 
method, involves attaching insulating material to the 
structure, which is coated with an adhesive such as 
mortar [1,2]. Poor adhesive performance can lead to 

detachment of the insulating material. However, 
inspecting the application quality with limited 
supervisory personnel at construction sites is labor-
intensive and virtually impractical in terms of time and 
cost. To address this challenge, automating the inspection 
of adhesive using deep learning-based computer vision 
can significantly enhance productivity by minimizing 
manpower and costs [2,3]. 

The relevant large datasets are essential for the deep 
learning. Existing open-source image datasets such as 
Common Objects in Context (COCO) [4] and the 
Stanford 2D-3D-Semantics Dataset [5] are available but, 
there are no datasets related to construction site, 
particularly, EIFS. Additionally, acquiring image 
datasets in construction site is difficult due to the inherent 
risk of accidents at construction sites. Moreover, the 
images obtained are often disordered and cluttered [6].  
As an alternative, using web crawling techniques to 
acquire images allows the rapid collection of a large 
number of photos without visiting construction sites. 
However, a significant issue arises with the time-
consuming process of labeling these images to transform 
them into a dataset suitable for training in computer 
vision [6,7].  

Recently, a novel approach has been proposed to 
overcome the challenges previously mentioned: synthetic 
image modeling, which involves creating datasets for 
specific fields. By synthesizing in artificial modeled 
virtual environment, desired scenes can be created. The 
synthesized scenes are already data-encoded, thus 
reducing efforts for labeling and annotation [3,7,8]. 
However, existing studies have focused on fixed and 
regular shaped objects, thus applying instance 
segmentation with synthetic datasets of irregular shaped 
object is not explored well. 

The purpose of this study is to conduct foundational 
research on the effectiveness of training an image 
segmentation model for segmenting dab and insulation in 
EIFS utilizing synthetic data, comparing the performance 
between real datasets and mixed datasets combining 
synthetic datasets. 
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2 Related Work 

2.1 Computer vision in construction. 

With the advancement of datasets and the 
corresponding development of computer vision, 
applications in the construction industry have also 
evolved. AI, along with more sophisticated object 
detection and segmentation techniques, not only reduce 
tedious, human-error-prone tasks but also lead to 
improved research in terms of labor intensity and time 
consumption. 

Computer vision facilitates rapid and accurate 
material quantity estimation, thereby aids progress 
monitoring. Li et al. (2021) [9] proposed a real-time, 
cost-effective rebar counting scheme using the YOLOv3 
detector. Wang et al. (2021) [10] utilized surveillance 
video to track information of precast walls such as 
numbers and position, transmitting the data in the 
Building Information Model (BIM) to achieve automatic 
progress using timestamp methods. 

In the early stages of computer vision application in 
construction safety management, it primarily focused on 
determining the use of personal protective equipment 
such as workers' hard hats. Fang et al. (2018) [11] 
conducted research on non-hardhat-use detection using 
100,000 photos from far-field surveillance at 
construction sites. Additionally, research on classifying 
cracked or damaged buildings has been actively pursued. 
Silva et al. (2018) [12] proposed a model that uses deep 
learning image classification to differentiate between 
concrete photos with and without cracks. Gao et al. (2018) 
[13] conducted structural damage recognition through 
spalling condition checks and evaluation of damage 
levels. 

In the construction field of quality inspection, Xia et 
al. (2024) [14] conducted research on First Floor 
Elevation estimation using the YOLOv5 model and 
mobile LiDAR point clouds. Chen et al. (2021) [15] 
investigated quality of building façade using photos 
obtained from unmanned aerial vehicles. 

2.2 Synthetic datasets related to construction 
industry  

While computer vision has evolved alongside the 
advancement of datasets, there has been a shortage of 
datasets related to the construction field [6,7]. Acquiring 
real image data poses risks due to the nature of 
construction sites, also labeling acquired images 
manually requires significant time and labor.  

To address this challenge, lots of research has been 
conducted to train computer vision models using 
synthetic datasets created using various methods related 
to construction sites. Soltani et al. (2016) [3] proposed a 

method to separately synthesize excavators and 
backgrounds. They found that, compared to traditional 
annotation methods, auto-annotation reduced the 
required time. Neuhausen et al. (2020) [8] aimed to create 
synthetic datasets using Blender to track worker 
productivity and safety management. Hong et al. (2021) 
[16] utilized the BIM model to generate synthetic 
datasets for infrastructure scenes. While these studies 
provided direction and validated the utility of synthetic 
datasets for computer vision, they focused on large 
objects. Lee et al. (2023) [17] conducted research of 
safety monitoring through synthetic datasets focusing on 
small-sized personal protective equipment detection 
using the Unity game engine. 

Particularly, Wang et al. (2023) [18] studied synthetic 
datasets for rebar instance segmentation. They compared 
the performance using a Mask R-CNN model with 
various combinations of real datasets and synthetic 
dataset, concluding that experimental groups composed 
with both real and synthetic datasets appropriately are 
more robust for instance segmentation than using only 
real datasets. 

Although these studies sufficiently validated the 
utility of synthetic datasets in the construction industry 
for computer vision, they targeted fixed and regular 
shapes (e.g., excavators, rebar, etc.). Therefore, in this 
study, we aim to create synthetic datasets for EIFS 
instance segmentation, targeting irregularly shaped 
objects that may vary in appearance over time, and 
validate their utility accordingly. 

3 Methodology 
This study analyses the effectiveness of training an 

image segmentation model using mixed datasets 
combined with synthetic data, compared to real datasets. 
Instance segmentation model was applied to segment dab 
and insulation in an image, thereby the classes were set 
as insulation and dab. Figure 1 illustrates the shape of 
EIFS. 

 
 

 
 

Figure 1. Ribbon and dab method 
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As illustrated in Figure 2, the framework can be divided 
into two main phases. First, during the dataset 
manufacturing stage, photographs are collected from 
both real EIFS construction sites and virtual construction 
sites where EIFS is ongoing. Then, mixed datasets are 
made with synthetic datasets and randomly sampled real 
datasets. Both real datasets and mixed datasets are 
augmented before instance segmentation stage to prevent 
overfitting. Second, in the instance segmentation stage, 
the YOLOv8 model is used to train the datasets. The 
trained weights are then utilized to compare area 
segmentation in actual EIFS construction sites. 

3.1 Data Manufacturing 
To test the efficacy of synthetic datasets, the 

experimental datasets were divided into two control 
groups: (1) 100 numbers of realistic images from the 
construction site, and (2) a mixed dataset of 50 realistic 
and 50 synthetic images. For the real datasets, we visited 
three different EIFS construction sites, to acquire images 
for train model and testing. Labeling and annotation was 
carried out using Roboflow [19], and augmentation was 
performed to prevent overfitting. 

 
 Figure 3. Images and annotation using Roboflow 
 

Synthetic dataset environment was created using 
Unreal Engine 4, and the dataset synthesis model was 
developed utilizing the algorithm of NVIDIA's Deep 
Learning Dataset Synthesizer (NDDS) [20,21]. 

As illustrated in left side of Figure 4 virtual 
construction site was created using Unreal Engine 4. For 
the variation of datasets such as shade adding, point of 
view, worker’s position were conducted. The right side 
of Figure 4 shows the annotation of the image. Every 
single color of image represents the class which is 
divided respectively and automatically connected the 
components of Unreal Engine 4. 

 

Figure 4. Virtual construction site of Unreal 
Engine 4(left) annotation of the image(right) 

3.2 Instance Segmentation 
The You Only Look Once (YOLO) model is one of 

the most renowned models for one-step object detection 
capabilities, offering rapid detection speed and high 
accuracy. The latest version of the YOLO series is 
YOLOv8 [22], which replaces the C3-module with C2f-
module for robust gradient flow, adopts a discrete head 
structure, these modifications greatly improve the 
detection accuracy. 

YOLOv8-seg is an instance segmentation model 

Figure 2. Framework of Study 
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derived from YOLOv8. YOLOv8-seg consists of five 
models: 8n-seg, 8s-seg, 8m-seg, l-seg, and x-seg. Starting 
with the lightest model, 8n-seg, the amount of 
computation increases gradually towards 8x-seg. 
Consequently, mAP and processing speed also increase. 
The selected model was YOLOv8x-seg in this study, 
which is the highest accuracy model in the aspect of mAP. 

4 Experimental Study 

4.1 Evaluation Metrics 
In this section, we aim to discuss the results of tests 

conducted using YOLOv8 to evaluate the validity of 
instance segmentation in both real datasets and mixed 
datasets. The data were split into training, validation, and 
test datasets at a ratio of 80:10:10. The parameters for the 
training model were set as follows: 200 epochs, a 
learning rate of 0.01, and a batch size of 16. 

The performance metric for the segmentation 
algorithm was mean Average Precision at 50 (map@50). 
Average Precision (AP) is the area under the precision-
recall curve for a specific class, and the mAP is the 
average of these AP values across all classes. The 
map@50 specifically refers to the mAP calculated with 
an Intersection over Union (IoU) threshold set at 0.5, 
meaning that predictions must overlap at least 50% with 
the ground truth to be considered correct. The equation 
of AP, mAP are demonstrated below. 

AP = 𝑙𝑙𝑙𝑙𝑙𝑙
𝑛𝑛→∞
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(2) 

The Intersection over Union (IoU) is calculated as the 
ratio of the area of overlap between the Ground Truth and 
the Detection to the sum of their areas (Equation(3)) 

IoU =
Area of Overlap
Area of Union

 

precision =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
 

recall =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁
 

 
(3) 

 
(4) 

 
(5) 

True positive (TP) refers to the count of instances 
correctly predicted as true by the model, false positive 
(FP) denotes instances wrongly predicted as true while 
they are false, false negative (FN) represents instances 
incorrectly predicted as false that are actually true. 
Precision (Equation(4)) is the proportion of correct 
predictions among the results predicted by the model, 
while Recall (Equation(5)) is the proportion of actual true 
instances that the model correctly predicts as true. Both 

Precision and Recall are adjusted based on the confidence 
level setting used as the model's decision criterion. 
Raising the decision criterion increases Precision, 
whereas lowering it enhances Recall. 

4.2 Test of Real Datasets 
The result of Real datasets at the best confidence level, 

the values of precision, recall and map@50 are 0.89, 0.96, 
and 0.87 respectively. The highest performance at the 
198th epoch are depicted in the Confusion Matrix shown 
in the following Figure 5. According to the confluence 
matrix, the model trained by real datasets predicted the 
dab well at 1.0, while the prediction of insulation was 
relatively low at 0.71. 

Figure 5. Confusion matrix of real datasets 

4.3 Test of Mixed Datasets 
The results of the 100 numbers of mixed datasets 

which is composed with 50 numbers of synthetic datasets 
and 50 randomly sampled real datasets. The Precision, 
Recall, and map@50 at the best confidence level are 0.99, 
0.94, and 0.95, respectively. The confusion matrix in the 
subsequent Figure 6 illustrates the performance outcomes 
for the mixed datasets dataset using the model that 
achieved its peak performance at the 175th epoch. 
According to the confusion matrix, it can be seen that 
model trained by synthetic datasets predicted well as 1.0 
for both dab and insulation. 

  Figure 6. Confusion matrix of mixed datasets 
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4.4 Comparative Analysis 
The difference in map@50 between real datasets and 

mixed datasets was more marginal than expected. 
However, the trends observed in YOLOv8’s validation, 
as shown in Figure 7, indicated distinct learning patterns 
for real datasets and mixed datasets. While the number of 
datasets may not be sufficient, obtaining real datasets 
involved visiting construction sites to capture 
photographs, as mentioned in the introduction, which 
presents hazards and challenges in image labeling. In 
contrast, with synthetic datasets, just a few clicks can 
modify the environment, allowing for the manufacture of 
datasets with varied characteristics.  

 
Figure 7. Prediction of real EIFS image with 

model trained by real datasets (left) and mixed 
datasets (right) 

5 Conclusions 
This study analyzed the effectiveness of training a 

deep learning model for segmenting irregular shaped dab 
and insulation in EIFS utilizing synthetic datasets, 
compared to real datasets. In this study, images of EIFS 
in construction sites were acquired from both real world 
and virtual environments to create datasets. To evaluate 
the segmentation performance of EIFS, the subjects were 
categorized into two classes, dab and insulation, and 
trained using the YOLOv8x-seg model. The map@50 
results used as performance indicators for real datasets 
and mixed datasets were 0.87 and 0.95, respectively. 

Utilizing synthetic datasets can reduce the risk of 
visiting construction sites with safety accidents. Also, 
generating synthetic datasets enable the creation of 
various compositions, environments, and scenarios with 
little effort. Furthermore, research suggested 
segmentation of irregular shaped object and potential 
model robustness as well. Thus, proposed method can be 
utilized in other applications such as concrete crack. 

For further research, the effectiveness of applying 
synthetic datasets in the instance segmentation on various 
objects will be explored with a large size of datasets. 
Additionally, the comprehensive automatic supervision 
model will be studied as well as segmentation of ribbons 

with dab and insulation, to calculate the area of EIFS 
segments in pixels.  
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