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Abstract 

Chilled water-cooling systems are essential for 
maintaining optimal building temperatures in 
commercial applications, such as hospitals, where 
precise temperature control is critical for patient care. 
Accurately estimating cooling tower fan speed is vital 
for energy efficiency and operational optimization. 
Traditional physics-based models often require 
iterative solving techniques, such as Newton-Raphson, 
leading to high computational costs and slow 
performance. This paper presents an alternative 
approach using symbolic regression to develop a data-
efficient, explicit model for predicting cooling tower 
fan speed. Trained on just 72 hours of data, the model 
was validated on three separate periods: the first 
week immediately after training, the following week, 
and another week approximately two months later, 
achieving R² values of 0.92, 0.87, and 0.83, 
respectively. The inference speed is nearly 
instantaneous, as the model eliminates iterative 
calculations, making it well-suited for real-time 
applications. Using commonly available system 
parameters, the model enhances both computational 
efficiency and energy management. Results 
demonstrate its potential to improve HVAC system 
performance, reduce energy consumption, and 
support sustainable building operations, offering a 
scalable solution for practical deployment in 
commercial cooling systems. 
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1 Introduction 
Efficient cooling is essential for maintaining optimal 

environmental conditions in commercial buildings, 
particularly in facilities like hospitals where temperature 
control is critical for patient care [1]. Cooling towers, as 
integral components of chilled water-cooling systems, 
play a crucial role in rejecting heat from the system. 

Accurate estimation of the cooling tower's fan speed is 
vital, as it serves as a proxy for estimating power 
consumption through the application of the affinity laws, 
which describe how fan power scales with changes in fan 
speed. This relationship can be leveraged in simulations 
to optimize control variables for the condenser water loop, 
thereby enhancing the cooling system’s performance [2]. 
By balancing the power consumption between chillers 
and cooling towers, it is possible to minimize the overall 
energy consumption of the chilled water system, leading 
to improved operational efficiency and reduced 
operational costs [3, 4, 5]. 

Traditionally, physics-based models (also known as 
gray-box models), such as Merkel-based models, have 
been employed to simulate cooling tower performance 
[6]. These models rely on a combination of fundamental 
physical principles and empirical data, providing robust 
options for system analysis and power estimation. 
However, they do not offer a direct output for fan speed, 
necessitating the use of iterative search methods like the 
Newton-Raphson technique to solve for fan speed [2]. 
This requirement for iterative solving introduces 
complexity and computational inefficiencies, rendering 
these models less suitable for real-time applications 
where rapid and responsive control is necessary. 

In contrast, data-driven models (or black-box models) 
present a promising alternative by utilizing machine 
learning techniques to learn the relationship between 
input parameters—such as temperature, flow rate, and 
environmental conditions—and output variables like fan 
speed directly from data. While data-driven models can 
achieve high accuracy, they often suffer from limitations 
in generalization capability, particularly when operating 
outside the range of the training data. Additionally, these 
models typically require large datasets for effective 
training, which can limit their applicability in scenarios 
where data availability is constrained or where dynamic, 
real-time system responses are needed [7]. 

The motivation for this research lies in overcoming 
the limitations of both gray-box and black-box 
approaches by developing an interpretable and data-
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efficient model using symbolic regression (SR). 
Symbolic regression provides a unique methodology that 
automatically discovers mathematical expressions to 
describe the relationships between input and output 
variables [8]. Unlike traditional machine learning 
methods, SR generates transparent, closed-form 
mathematical models that are both interpretable and 
computationally efficient [9]. This makes SR particularly 
suitable for real-time control strategies, as the resulting 
models eliminate the need for iterative numerical 
solutions required by gray-box models while avoiding 
the black-box nature and data dependency of 
conventional machine learning techniques. 

2 Objectives of the Study  
The primary objectives of this research are as follows: 

1. Develop a data-efficient explicit model for cooling 
tower fan speed using symbolic regression, 
incorporating key input variables such as wet-bulb 
temperature, inlet and outlet water temperatures, 
and water flow rate, while minimizing the need for 
large datasets. 

2. Improve simulation speed and computational 
efficiency by providing an explicit, direct model for 
fan speed estimation, thereby eliminating the need 
for iterative solutions required by traditional 
physics-based models and enabling faster real-time 
decision-making. 

3. Leverage symbolic regression to create an 
interpretable and generalizable data-driven model 
that performs well with limited data and can be 
adopted in real-time applications, offering a 
practical and computationally efficient alternative 
to black-box models that typically require large, 
extensive datasets. 

By addressing these objectives, this research aims to 
present a data-efficient, computationally efficient, and 
interpretable approach for estimating fan speed in chilled 
water-cooling systems. This advancement has the 
potential to enhance energy optimization, improve real-
time control mechanisms, and offer a practical solution 
for systems with limited data, thereby contributing to 
more sustainable and cost-effective building operations. 

3 Literature Review 
Cooling towers are critical components of HVAC 
systems, responsible for rejecting heat from processes or 
buildings to the atmosphere. Their operational efficiency 
and energy consumption depend significantly on the 
control of fan speed, which in turn determines the leaving 
water temperature. Accurately predicting this 
temperature is essential for improving energy efficiency 

and ensuring optimal performance [3, 10, 11]. To model 
the leaving water temperature, three primary methods 
have been developed over the years: the Merkel method, 
the Poppe method, and the enthalpy-driven effectiveness-
NTU method [6]. These models have served as the 
foundation for cooling tower analysis and control 
strategies. 

The Merkel method, first proposed in 1925, simplifies 
the cooling process by assuming a constant Lewis factor 
(the ratio of sensible to latent heat transfer coefficients) 
and neglecting the evaporation losses of water. It 
integrates the heat and mass transfer equations along the 
height of the cooling tower to estimate the leaving water 
temperature [6]. While this approach has been widely 
adopted for its simplicity and ease of implementation, it 
fails to capture the complex interactions between heat 
and mass transfer that occur in real operating conditions, 
particularly under varying ambient and operational 
parameters. 

The Poppe method improves upon Merkel's 
assumptions by considering the simultaneous and 
coupled heat and mass transfer processes inside the 
cooling tower. Unlike Merkel's method, the Poppe 
approach does not assume a constant Lewis factor and 
accounts for variations in the air and water enthalpy. This 
method provides higher accuracy in predicting the 
leaving water temperature, particularly in scenarios 
where Merkel's assumptions lead to discrepancies [12]. 
However, the Poppe model requires solving a system of 
coupled nonlinear differential equations, which makes it 
computationally intensive and less suited for real-time 
control. 

The enthalpy-driven effectiveness-NTU method 
provides a more flexible and systematic framework for 
predicting the leaving water temperature. By introducing 
the concept of heat exchanger effectiveness, this method 
evaluates cooling tower performance using enthalpy as 
the driving force. It allows for improved accuracy in 
capturing cooling tower dynamics under varying 
conditions compared to traditional methods [2]. Despite 
its advantages, the enthalpy-driven method still involves 
solving nonlinear relationships, which can pose 
challenges for real-time optimization and control 
strategies. Another, simpler model was proposed based 
on Merkel’s theory and the effectiveness-NTU method. 
This model was developed through energy balance and 
heat-mass transfer analysis [13]. 

For a closed-loop cooling tower leaving water 
temperature control strategy, the fan speed must be set to 
its optimal value to maintain the optimal leaving water 
temperature. However, if the desired leaving water 
temperature setpoint deviates from this optimal condition, 
determining the appropriate fan speed requires solving 
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the governing equation numerically. Equation (1) 
illustrates this relationship [2]: 

𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑓𝑓𝑇𝑇(𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 ,𝑇𝑇𝐶𝐶𝑊𝑊 ,𝑀𝑀𝐶𝐶𝐶𝐶 , 𝑆𝑆𝑆𝑆𝑆𝑆,𝐾𝐾𝑑𝑑′𝐴𝐴) (1) 

where 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 is the leaving water temperature, 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶  is 
the entering water temperature, 𝑇𝑇𝐶𝐶𝑊𝑊  is the ambient air 
wet bulb temperature, 𝑀𝑀𝐶𝐶𝐶𝐶 is the water mass flow rate, 
𝑆𝑆𝑆𝑆𝑆𝑆  is the fan speed, and 𝐾𝐾𝑑𝑑′𝐴𝐴  the design moisture 
transfer coefficient.  

Solving for 𝑆𝑆𝑆𝑆𝑆𝑆  under these conditions requires 
iterative numerical techniques such as the Bisection 
method or Newton-Raphson method, which are widely 
used for solving nonlinear equations. These methods, 
while effective, are computationally demanding and 
time-consuming, especially for real-time applications 
where fast control responses are essential [2, 3]. Similarly, 
for closed-loop approach temperature control, the fan 
speed must also be determined iteratively if the approach 
temperature setpoint differs from the optimal value. 
These computational requirements can lead to delays in 
control responses, limiting their feasibility for real-time 
applications [3]. Thus, while the Merkel, Poppe, and 
enthalpy-driven NTU methods provide robust 
frameworks for cooling tower performance prediction, 
their reliance on computationally intensive numerical 
solvers introduces significant overhead during closed-
loop control. 

To overcome the computational challenges 
associated with traditional models, data-driven 
approaches have gained increasing attention. Data-driven 
methods utilize operational data to identify complex 
system dynamics and provide real-time predictive 
models. Among these approaches, symbolic regression 
(SR) has emerged as a powerful technique for deriving 
explicit and interpretable mathematical expressions from 
data [8, 9]. SR identifies relationships between variables 
without relying on predefined model structures, enabling 
the discovery of closed-form equations that can directly 
describe the behavior of cooling towers, including fan 
speed and leaving water temperature. 

Although symbolic regression has been applied 
successfully in other areas of HVAC systems, such as 
building thermodynamics [14] and gray-box modeling of 
air conditioning systems [15], its application to cooling 
tower modeling remains underexplored. [14] used SR to 
model building energy dynamics and demonstrated a 
16.1% reduction in peak power through a predictive 
control framework. [15] applied SR for gray-box 
modeling of unitary air conditioning systems, achieving 
high accuracy in predicting cooling capacity and 
coefficient of performance (COP). [16] further 
showcased the potential of SR for indoor temperature 
forecasting, reducing model complexity while improving 

computational efficiency. These studies highlight SR's 
ability to capture nonlinear dynamics effectively while 
providing explicit and interpretable solutions, making it 
a suitable candidate for real-time applications. 

In this research, we address the limitations of 
traditional cooling tower models and propose a symbolic 
regression-based model to predict cooling tower fan 
speed as a function of the leaving water temperature, 
entering water temperature, water mass flow rate, and 
wet bulb temperature. Unlike traditional methods, which 
require iterative numerical solutions to determine fan 
speed for a given setpoint, our approach formulates an 
explicit and interpretable model derived directly from 
operational data. 

The proposed symbolic regression (SR) model 
eliminates the need for computationally intensive 
techniques, such as the Bisection method or Newton-
Raphson iterations, which are typically employed to 
solve the governing nonlinear equations. By generating 
closed-form expressions, the SR model enables faster and 
more efficient inference, making it particularly well-
suited for closed-loop control strategies. This capability 
allows for real-time adjustments of fan speed to maintain 
desired leaving water temperature or approach 
temperature setpoints. Furthermore, the resulting SR 
model is computationally efficient and highly 
interpretable, providing clear relationships between key 
operational variables—leaving and entering water 
temperatures, wet bulb temperature, and water mass flow 
rate. This facilitates real-time optimization of cooling 
tower performance, overcoming the bottlenecks inherent 
to traditional numerical approaches while ensuring robust 
and accurate control of cooling tower operations. 

4 Methodology 

4.1 Case study and Data Collection 
The primary case study for this research is a hospital 

located in the Greater Vancouver area, within ASHRAE 
climate zone 4. This hospital is one of the busiest in the 
region, providing comprehensive care across multiple 
specialties, including trauma, cardiac, neurosurgery, 
high-risk obstetrics, neonatal intensive care, and acute 
mental health services. The diverse range of services 
necessitates a robust and efficient cooling system to 
maintain optimal environmental conditions, which are 
critical for patient care. The hospital’s central cooling 
plant, comprising chillers and cooling towers, is 
responsible for meeting the facility’s substantial cooling 
demands. 

Data for this study were collected from the central 
cooling system of the hospital over a five-month period, 
from May 1, 2024, to September 30, 2024. However, 
only 72 hours of data, specifically from July 8th to July 
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10th, were utilized for training the models (see Figure 1). 
This subset consists of 288 data points, sampled at 15-
minute intervals, capturing the system’s dynamic 
behaviour. Representing approximately 2% of the total 
collected data, these 72 hours were carefully selected to 
include a wide range of operational conditions, such as 
fluctuations in outdoor temperature, humidity, and 
cooling demand. This ensures a diverse and 
representative dataset that effectively captures the 
cooling system’s performance across different operating 
states.  

The collected variables include leaving water 
temperature (𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 , in °C), entering water temperature 
(𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 , in °C), condenser water mass flow rate (𝑀𝑀𝐶𝐶𝐶𝐶, in 
L/s), dry-bulb outdoor air temperature (𝑂𝑂𝐴𝐴𝑇𝑇 , in °C), 
relative humidity (RH, in %), and cooling tower fan 
speed (SPD, in %). The fan speed during this period 
varied, with a lower bound of 33.3%, and its operational 
range was crucial for evaluating the system's 
performance. 

 
Figure 1: Cooling tower fan speed dataset used for 
model training 

4.2 Data Pre-processing and Feature 
Engineering 

To ensure the quality and relevance of the data for 
modeling, several pre-processing and feature engineering 
steps were undertaken. Wet-Bulb Temperature was 
calculated using both Relative Humidity and Air 
Temperature based on the formula provided by [17]. This 
additional feature was included to better capture the 
thermodynamic conditions affecting the cooling tower 
performance. 

The raw dataset underwent a series of filtering criteria 
to remove unreliable or irrelevant measurements. First, 
instances where the fan speed (SPD) was below 33.3% 
were discarded to eliminate periods of suboptimal 
operation. Additionally, data points with a wet-bulb 
temperature below 10°C were excluded to focus the 
analysis on conditions where cooling demands are more 
significant. Measurements where the condenser water 

supply temperature (𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶) exceeded the condenser water 
return temperature (𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶) were also removed, as such 
scenarios are physically implausible and likely indicative 
of sensor errors or operational issues. 

Further, any records where the condenser water mass 
flow rate (𝑀𝑀𝐶𝐶𝐶𝐶) fell below 50 L/s were filtered out to 
ensure the dataset only included stable and efficient 
operating conditions. Finally, rows containing NaN 
values in any of the input or target variables were 
discarded to maintain data integrity and avoid 
computational issues during model training. 

After the pre-processing steps, a total of 283 data 
points remained, reflecting the impact of the filtering 
criteria in removing unreliable or irrelevant data. This 
cleaned dataset was subsequently split into training and 
testing subsets, with an 80-20% division, respectively. 
The split was performed without shuffling to preserve the 
temporal sequence of the data, which is critical given the 
time-series nature of the dataset. For modeling, the fan 
speed (SPD) was designated as the target variable, while 
the remaining variables were selected as the input 
features. This structured and pre-processed dataset 
provided a robust foundation for the subsequent symbolic 
regression modeling and analysis. 

4.3 Symbolic Regression Modeling with PySR 
The modeling process was conducted using Python, 

leveraging the PySR package [18] for symbolic 
regression. Symbolic regression is a data-driven 
approach that searches the space of mathematical 
expressions to find models that best fit the data. Unlike 
traditional regression methods that require predefined 
forms of the model, symbolic regression explores a wide 
variety of possible equations, offering both accuracy and 
interpretability [8]. 

PySR employs a genetic algorithm-based approach to 
evolve mathematical expressions, optimizing them to 
minimize the error between the predicted and actual 
values. The underlying computational engine utilized 
Julia, a high-performance programming language, to 
enhance the efficiency and scalability of the symbolic 
regression process. This integration allows for rapid 
evaluation of numerous candidate models, facilitating the 
discovery of optimal or near-optimal symbolic 
representations of the target variable. 

In this study, the symbolic regression was configured 
with specific hyper-parameters to guide the model 
generation process. The binary operators included in the 
search space were addition (+), multiplication (*), 
subtraction (-), division (/), and exponentiation (^). The 
loss function was set to L2DistLoss(), which corresponds 
to the mean squared error between the predicted and 
actual fan speeds. Model selection was based on accuracy 
to ensure that the generated models achieved high 
predictive performance. 
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To accelerate the training process, several 
performance settings were enabled. The multithreading 
setting was activated to utilize multiple CPU cores, 
improving computational efficiency. The fast_cycle 
setting was set to False, which prevents the batch over 
population subsamples algorithm, designed to speed up 
the cycles by approximately 15%, but at the risk of being 
less algorithmically efficient. The turbo setting was also 
False, as it refers to the experimental use of 
LoopVectorization.jl, which speeds up the search 
evaluation but may not support certain operators and does 
not work with 16-bit precision floats. Finally, the bumper 
setting was turned off; this experimental feature uses 
Bumper.jl to speed up the search evaluation, though it 
also does not support 16-bit precision floats. These 
configurations were carefully chosen to strike a balance 
between computational efficiency and model accuracy, 
ensuring that the symbolic regression process remained 
robust, scalable, and suitable for generating interpretable 
models for cooling tower fan speed prediction. 

4.4 Model Training and Validation 
The training phase involved fitting the symbolic 

regression model to the training dataset using the 
specified hyper-parameters and performance settings. 
The model was trained to identify the mathematical 
relationship between the input features (𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 , 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 ,  
𝑇𝑇𝐶𝐶𝑊𝑊 , and 𝑀𝑀𝐶𝐶𝐶𝐶 ) and the target variable (𝑆𝑆𝑆𝑆𝑆𝑆 ). This 
relationship can be mathematically represented in the 
following general form:  

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑓𝑓𝐶𝐶𝑆𝑆𝑆𝑆(𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 ,𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 ,𝑇𝑇𝐶𝐶𝑊𝑊 ,𝑀𝑀𝐶𝐶𝐶𝐶) (2) 

Once the model was generated, its performance was 
evaluated using two key metrics: R-squared (R²) to 
measure the proportion of variance in the target variable 
that is predictable from the input features and Root Mean 
Squared Error (RMSE) to provide an absolute measure of 
the prediction error in the same units as the target variable. 

To assess the model’s generalizability, validation was 
performed on an independent dataset comprising two 
weeks of subsequent data. This validation step was 
crucial to ensure that the symbolic regression model 
maintained its accuracy and reliability when applied to 
new, unseen data. The performance metrics on the 
validation set provided an indication of the model's 
robustness and its potential applicability in real-world 
cooling system optimization. 

Overall, the methodology combines rigorous data 
collection and preprocessing with advanced symbolic 
regression techniques to develop an accurate and 
interpretable model for predicting cooling tower fan 
speed. The use of PySR and its efficient computational 
backend facilitates the discovery of optimal 
mathematical models that can enhance the understanding 

and control of cooling system operations.  

5 Results 

5.1 Symbolic Regression Model 
The best-performing model derived through symbolic 

regression is represented by the following mathematical 
expression: 

𝑆𝑆𝑆𝑆𝑆𝑆 = 0.707𝑀𝑀𝑐𝑐𝑐𝑐 +
0.707𝑀𝑀𝑐𝑐𝑐𝑐

𝑇𝑇𝐶𝐶𝑊𝑊
−

13.2𝑀𝑀𝑐𝑐𝑐𝑐

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐
+ 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐

0.764𝑇𝑇𝑊𝑊𝑊𝑊
𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐−9.71 − 13.5

−𝑀𝑀𝑐𝑐𝑐𝑐
−0.878𝑀𝑀𝑐𝑐𝑐𝑐 

(3) 

This equation provides a direct relationship between 
cooling tower fan speed and the key input features: wet-
bulb temperature, condenser water supply temperature, 
condenser water return temperature, and mass flow rate 
of condenser water. The model is interpretable and 
captures the nonlinear interactions among the input 
variables. 

5.2 Performance Evaluation on Test Data 
The model's performance was first evaluated on the 

designated test dataset, comprising 20% of the data 
selected from the initial 72-hour training period. The 
following metrics were obtained: 

• R² score: 0.8881 
• RMSE: 3.9325 

These results indicate that the model captures a 
significant portion of the variability in the fan speed 
while maintaining low prediction error. The R² score of 
0.89 demonstrates high predictive accuracy, while the 
RMSE of approximately 3.93 reflects the model's strong 
ability to estimate fan speed with minimal deviation from 
the actual values. 

5.3 Performance Evaluation on Validation 
Data 

To assess the model's generalization capability, it was 
validated on an independent dataset across three separate 
periods: the first week after training (July 11th to 18th), 
the following week (July 18th to 25th), and an additional 
week nearly two months later (September 1st to 8th), 
demonstrating its credibility and robustness. 

For the week of July 11th to 18th, 2024, the model 
achieved an R² of 0.92 and an RMSE of 3.76, 
demonstrating its strong predictive accuracy and 
robustness in estimating fan speed. The time-series plot 
(Figure 2) illustrates a close alignment between actual 
and predicted values, while the scatter plot (Figure 3) 
confirms a strong correlation, with most points closely 
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following the diagonal reference line, indicating minimal 
prediction error. 

 
Figure 2 Time series plot of actual versus 
prediction values for first week of validation data 

 
Figure 3 Scatter plot of actual versus prediction 
values for first week of validation data 

For the week of July 18th to 25th, 2024, the model 
achieved an R² of 0.87 and an RMSE of 3.82, maintaining 
strong predictive performance and consistency in 
estimating fan speed. The time-series plot (Figure 4) 
illustrates a close match between actual and predicted 
values, while the scatter plot (Figure 5) confirms a strong 
correlation, with most points aligning along the diagonal 
reference line. The slight decline in R² suggests minor 
operational variations, yet the model continues to 
generalize well, reinforcing its reliability in diverse 
conditions. 

To evaluate the performance and generalizability of 
the model, it was further validated on an independent 
dataset covering the week of September 1st to 8th, 2024, 
achieving an R² of 0.83 and an RMSE of 6.20. While the 
slight decline in R² suggests some operational variations, 
the model remains effective in capturing key system 
dynamics. The time-series plot (Figure 6) shows strong 
alignment between actual and predicted values, while the 
scatter plot (Figure 7) confirms a consistent correlation, 
reinforcing the model’s reliability in predicting fan speed 

under varying conditions. 

 
Figure 4 Time series plot of actual versus 
prediction values for second week of validation 
data 

 
Figure 5 Scatter plot of actual versus prediction 
values for second week of validation data 

 

 
Figure 6 Time series plot of actual versus prediction 
values for third week of validation data 
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Figure 7 Scatter plot of actual versus prediction values 
for third week of validation data 

6 Discussion 
On the test dataset (20% of the training period), the 

model achieved an R² score of 0.8881 and an RMSE of 
3.9325, capturing nearly 89% of the variance in fan speed 
with minimal prediction error. Further validation 
confirmed its generalizability. During the first validation 
week (July 11–18, 2024), the model achieved an R² of 
0.9206 and an RMSE of 3.7566, demonstrating strong 
agreement between predicted and actual values. For the 
second validation week (July 18–25, 2024), the model 
maintained an R² of 0.8676 and an RMSE of 3.8246, 
despite slight variations likely caused by operational 
changes. A third validation nearly two months later 
(September 1–8, 2024) resulted in an R² of 0.8349 and an 
RMSE of 6.1975. While the R² declined slightly over 
time, the model remained effective, confirming its 
robustness under changing conditions. 

The symbolic regression model eliminates the need 
for iterative numerical methods, such as Newton-
Raphson, which are computationally intensive and 
impractical for real-time applications. By generating 
explicit mathematical expressions, the model enables fast 
inference, allowing real-time adjustments to cooling 
tower fan speed to maintain desired operating conditions. 

Beyond computational efficiency, the model supports 
practical energy optimization strategies for chilled water 
plants, where balancing chiller and cooling tower 
operation is critical to minimizing total energy 
consumption. Cooling tower fans consume energy, but 
their operation influences chiller efficiency; optimizing 
only one component in isolation may lead to suboptimal 
system performance. The proposed model can be 
integrated into real-time optimization frameworks to 
determine the best trade-off between chiller and cooling 
tower energy use, reducing overall power consumption 
while ensuring adequate cooling. 

With its fast inference capability, the model enables 
real-time control adjustments based on changing 

conditions, preventing excessive cooling tower fan 
speeds that could increase energy use unnecessarily. Its 
explicit equations provide a direct relationship between 
key operational parameters, making it suitable for 
predictive control applications where chiller load and 
cooling tower operation are jointly optimized for 
efficiency. 

The model’s interpretability also facilitates 
decentralized control, where cooling tower fan speed is 
adjusted at the local level rather than relying on a central 
controller. This reduces communication delays and 
computational overhead while improving responsiveness 
to system dynamics. In large-scale systems with multiple 
cooling towers, localized optimization enhances overall 
performance, leading to energy savings and improved 
reliability. 

By integrating the model into smart HVAC control 
platforms, facilities can automate real-time energy 
management strategies to optimize cooling performance 
while reducing costs. This scalable approach makes the 
model applicable to hospitals, commercial buildings, and 
industrial facilities where precise control and efficiency 
are essential. 

In summary, the symbolic regression model provides 
a practical, real-time solution for cooling tower control. 
By balancing chiller and cooling tower energy use, it 
enhances system-wide efficiency, offering a valuable 
tool for intelligent HVAC management in energy-
conscious applications. 

7 Conclusions 
This study demonstrated the effectiveness of 

symbolic regression for predicting cooling tower fan 
speed in central chilled-water systems. The SR model 
achieved high accuracy, strong generalization, and 
computational efficiency across test and validation 
datasets. By producing explicit and interpretable 
mathematical models, it overcomes the limitations of 
traditional physics-based approaches and data-hungry 
black-box techniques. 

The proposed model offers a practical and scalable 
solution for real-time optimization and decentralized 
control of cooling systems, facilitating improved energy 
efficiency and operational performance. Future work will 
focus on enhancing the model’s adaptability to dynamic 
system changes and integrating it into broader energy 
management frameworks to further optimize large-scale 
cooling operations. 
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