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Abstract 

Visual inspection of civil infrastructure assisted by 

Unmanned Aerial Vehicles (UAVs) witnessed 

significant improvements due to the rapid 

development of drone-mounted cameras and sensors. 

In visual inspection, accurate pose estimation of the 

collected images is a pivotal task that enables 

registering images to pre-existing 3D scenes of the 

structure to identify the geometric relationship 

between the scene and the image. This allows for 

localizing regions of interest or defects in these images. 

In this work a novel image pose estimation technique 

is proposed to improve images pose estimation and 

registration of drone-collected images. The proposed 

method utilizes a 3D base Structure from Motion 

(SfM) model and pre-calibrated poses of base images 

to facilitate the registration and pose estimation of 

new query images via feature-based pose estimation 

framework. The method leverages deep-based feature 

matching to generate dense 2D correspondences to 

simultaneously generate the 2D and 3D 

correspondences needed to execute the perspective-n-

point solver and accurately estimate the pose. The 

proposed approach was tested against drone-collected 

images of cell tower and the image registration 

efficiency was evaluated through ROI localization in 

the registered images. 
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1 Introduction 

Condition assessment of large and hard-to-access 

infrastructure is a complex task and often requires trained 

technicians to employ time- and resource-extensive 

techniques for physical inspection [1]. The rapid 

development in UAVs and their associated sensors has 

led to a wide range of applications in condition 

assessment of civil infrastructures [2]. However, UAVs 

(e.g., drones) can be considered a multifunctional data 

acquisition system. Hence, robust inspection algorithms 

are required to leverage and fuse the various data types 

that drones can acquire to make sure of the acquired data. 

A widely adopted application of drones in condition 

assessment of civil infrastructure involves utilizing them 

to capture high-resolution images, which are then used to 

construct SfM models of the structure. For example, in 

bridge inspection, SfM models enhanced damage 

quantification [3], crack identification and visualization 

[4], and risk assessment and management [5]. Xiao et. al. 

utilized a deep learning-based point cloud segmentation 

algorithm to assist ROI extraction and crack 

identification in bridges [6]. For large highway truss 

structures, Yeum et. al. proposed autonomous ROI 

localization algorithm, and ROI classification algorithm 

[7]. Visual inspection using drone images was also 

implemented for crack and rust identification within 

ROIs extracted from monopole tower images [8] and 

produce a health index of power transmission tower [9]. 

In visual inspection, determining the 6 degrees of 

freedom (DoF) pose of the image (3 for translation and 3 

for rotation) enables establishing a geometric relationship 

between a 3D scene of the structure and the images. In 

the SfM framework, the simultaneous 3D reconstruction 

of a scene and pose estimation of images are core 

processes. This is typically achieved by extracting 

correspondences between 2D keypoints across multiple 

images and solving for camera poses and 3D points 

simultaneously. This implies that in case of visual 

inspection that involves constructing SfM model using 

large volume of images, the images are registered 

automatically as a natural product of the 3D 

reconstruction. 

On the other hand, the inspection process for civil 

infrastructure typically does not involve constructing an 

SfM model; instead, it primarily relies on visually 

analyzing high-resolution images of the structure, 

collected from specific targeted regions of interest (TRIs). 

Hence, SfM-enabled pose estimation is not possible and 

in case the inspector needs to estimate the pose of these 

images, then a pose estimation technique should be 

employed that works on single image, or image 

sequences [10]. 

Image pose estimation is an extensively explored 
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topic in the field of computer vision. A critical review by 

Xu et al. categorized pose estimation methods into two 

main categories: structure feature-based localization 

methods and regression-based pose estimation methods 

[11]. In structure feature-based methods, a 3D scene of 

the structure is employed to enable building 

correspondences between 2D points in a query image 

(image to be localized) and 3D points from the scene to 

enable estimating the pose of the image. Regression-

based methods employ convolutional neural networks 

and deep neural networks to regress the pose of RGB 

images (e.g., PoseNet [12]) 

Structure feature-based methods are widely used due 

to their robustness and accuracy [11]. The 2D-3D 

correspondences in this method are typically established 

by matching distinctive features from a 2D query image 

with a database of 3D points, each associated with 

corresponding feature descriptors. Establishing these 2D-

3D correspondences enables the estimation of the 

camera's position and orientation relative to the scene 

using a geometry constrain solver (e.g., Perspective-n-

Point [13]). 

A major drawback of this approach is the assumption 

that a database of descriptors is available and associated 

with the 3D points of the scene. However, the outputs of 

commercial 3D reconstruction and SfM platform does 

not typically involve image feature descriptors. Hence, a 

computationally intensive step is needed to establish the 

descriptors database for all base images. Another 

drawback related to the database of features descriptors 

is that the same feature extraction and description method 

should be used for both the base and query image to 

ensure consistency and accuracy [14]. Accordingly, if the 

feature extraction and description algorithm used in 

building descriptors database exhibits poor performance 

in matching image pairs with significant change in image 

environment (e.g., perspective, scale, or illumination), 

then finding proper number of matches between database 

and query images might not be possible. 

On the other hand, assuming that a database of 

descriptors is established, if the 3D point cloud (SfM 

model) of the structure is not dense enough, then 

establishing  high-quality correspondences between the 

database of descriptors and the query image’s descriptors 

cannot be achieved. 

To overcome the aforementioned drawbacks, an 

efficient structure feature-based image pose estimation 

approach is proposed to enable registering query images 

to the 3D scene without the need for database of 

descriptors and that can perform well in registering query 

images captured with significant variations in scale, 

perspective, zoom level, and background visibility 

compared to the database images.  

The proposed algorithm leverages deep-learning-

based local feature matchers to build dense 2D-to-2D 

matches between database images with known calibrated 

image poses and the query image. Then, the dense 

matches are used to simultaneously determine the 2D 

features and the 3D corresponding points, needed to 

estimate the pose. To estimate the image pose, a 

perspective-n-point solver within a Random Sample 

Consensus (RANSAC) framework was implemented. 

The proposed approach was implemented on drone-

collected cell tower images to test the accuracy of the 

approach in estimating the position and rotation of query 

images of the cell tower. The reliability of the proposed 

method was evaluated by utilizing the projection matrix 

calculated from the estimated pose in localizing regions 

of interest (ROIs) in the query images.  

2 Methodology 

2.1 Overview of the Technique 

UAV-based inspection of civil infrastructure involves 

building SfM model from a large set of sequentially 

captured images of the structure. The process of 3D 

reconstruction outputs 3D map of the structure (hereafter, 

base model) along with calibrated camera poses 

(hereafter, base images). 

In many cases, inspectors collect few images 

(hereafter, new images) around a specific TRI of high 

importance and the number of images might not be 

enough to build an SfM model. Hence, a reliable method 

is needed to enable registering these images and extract 

their poses without the need for a 3D reconstruction step. 

Registering the new images enable building the 

geometric relationship between the 3D scene and the new 

images which, in return, enable retrieving information 

from these images. To allow registering any new image 

to the base model, a pose estimation approach is proposed. 

The approach, shown in Figure 1, starts with a base 

image that clearly shows the TRI where the inspector 

needs to perform a focused inspection by collecting new 

images around that region with varying camera angle, 

distance from the region, zoom level, or  perspective. 

Prior to registering the new images, a vital step is to 

enable the inspector to retrieve the closest image relative 

to the base image the inspector started with. A geometry-

based closest image retrieval algorithm is proposed, and 

it retrieves all the closest images within an applicable 

pre-defined criteria set by the inspector. From the set of 

retrieved images, the inspector can select the image with 

the clearest view and highest details of the all the ROIs 

that needs to be inspected. 

The main enhanced step of this paper is to propose a 

registration approach that addresses the limitations of 

existing methods discussed in Section 1. Unlike 

conventional algorithms, the proposed method enables 

registering new images of hard-to-access infrastructure 
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with a pre-existing SfM model, even if created by 

commercial SfM platforms that lack 3D-associated 

feature descriptors or depth maps, without relying on 

such data. This broadens the applicability and utility of 

the registration process. 

For registering the new image and in addition to the 

base image the inspection started with and the new image 

that was selected from the pool of retrieved closest 

images, the concept of shadow image is proposed. 

Shadow image is another image from the set of base 

images that is adjacent to the original base image. To 

automate the process of selecting the shadow image, the 

proposed algorithm extracts the shadow image by 

bringing the image next in sequence relative to the 

original base image (base images are collected 

sequentially). The poses of the original base image and 

the shadow image are known from the SfM output. What 

keeps missing is the pose of the new image.  

The foundational step for registering the new image 

in the proposed approach is extracting dense 2D-to-2D 

correspondences between the three images: the original 

base image, the shadow image, and the new image. From 

the dense correspondences, the common extracted 

matching features in the three images are retained. Since 

the poses of the original new image and the shadow 

image are known, then a direct triangulation is performed 

on the common matched features between these two 

images and a 3D point cloud is generated. Moreover, 

from the common correspondences of the three images, 

the 2D-to-2D matched features between the original base 

image and the new image is extracted. The 

aforementioned steps simultaneously generate the 3D 

points and their corresponding 2D projections in the new 

image and these 2D-to-3D correspondences are then fed 

to a PnP solver to solve the geometric constrain 

relationship and estimate the 6 DoF  pose of the image. 

An important outcome of registering the new image 

to the SfM model is the ability to calculate the new 

image's projection matrix, which, in turn, facilitates the 

retrieval of ROIs from the new image. In this study, 

retrieving ROIs means allowing the inspector to select an 

ROI from the original base image, and the algorithm 

autonomously identifies and retrieves the corresponding 

ROI from the registered new image. The selection of the 

ROI is achieved in this study by enabling the inspector to 

simply draw a bounding box around the ROI in the 

original base image and to retrieve the same ROI form 

the new image. Hence, interacting with the 3D model to 

select the ROI points and project the ROI on the new 

image is not needed. More details provided in the 

subsequent sections explaining the details of the 

approach.  

 

Figure 1. Proposed methodology overview 

2.2 Base SfM Model 

The SfM technique has been widely adopted for its 

ability to create accurate 3D scene reconstructions. SfM 

establishes correspondences from overlapping images to 

concurrently calibrate unknown camera parameters 

(intrinsic and extrinsic) while reconstructing the 3D 

scene. Since SfM can construct the scene and calibrate 

the extrinsic (position and rotation) of each camera 

(image), SfM technique was utilized to extract the poses 

of the base images. 

Building high-quality SfM model requires feeding 
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large number of properly overlapping images to the 3D 

reconstruction algorithm. SfM quality depends on the 

quality of features matches across the sequenced images. 

Hence, employing high-resolution camera to collect the 

images is necessary to ensure reconstruction quality.  

In this work, since the algorithm is implemented on a 

hard-to-access structure (cell tower) a commercial drone 

equipped with high-resolution camera was used to collect 

the images needed for the 3D reconstruction. The images 

were collected along a pre-defined path designed using a 

drone mission planning software to ensure the systematic 

overlapping of the collected images.  

2.3 Retrieving Closest New Image(s) 

Traditional image retrieval algorithms rely on a 

database of precomputed image descriptors linked to set 

of database images. Distance between descriptors in the 

new and database images are computed and the images 

with the highest correspondences are retrieved. However, 

these approaches are computationally demanding and 

depend on predefined descriptors databases, which may 

not be available and also, cause potential mismatch. 

For UAV-based inspections, drones equipped with 

sensors like GPS, IMU, and compass typically record and 

associate metadata or exchangeable image file format 

(EXIF) data such as camera position, altitude, and 

heading angle with each collected image. Accordingly, A 

fast trigonometry-based retrieval algorithm leverages 

images metadata was developed to efficiently retrieve 

closest images without relying on complex feature-based 

methods. 

 

Figure 2. Image Retrieval Illustration 

Figure 2 illustrates the proposed technique for 

retrieving closest new image(s) using a single base image. 

In the shown illustration, for an arbitrary ROI, a base 

image is assumed to be captured at a distance (R1) from 

the ROI with camera pitch angle (α). For the same ROI, 

a new image is assumed to be captured at distance (R2) 

from the ROI with camera pitch angle (θ) and looking at 

the ROI (the main region to be inspected is expected to 

be near the centre of the image). Subsequently, relative 

altitudes between base camera and ROI horizontal plane 

(H1) and between new camera and ROI horizontal plane 

(H2) and the calculated difference in altitude (ΔHcalc) can 

be calculated as follows: 

𝐻1 = 𝑅1 ∗ tan(𝛼) (1) 

𝐻2 = 𝑅2 ∗ tan⁡(𝜃) (2) 

𝛥𝐻𝑐𝑎𝑙𝑐 = 𝑅1 ∗ tan(𝛼) − 𝑅2 ∗ tan⁡(𝜃) (3) 

The trigonometric relationships in Equations (1-3) 

form the foundation for EXIF-based image retrieval 

algorithm. To retrieve the new image(s) closest to the 

base image, the algorithm starts by reading the heading 

angle for the base image and all the new images. New 

images with similar heading to the base image are 

retained and remaining images are ignored. Then, for the 

base image and all retained new images, the algorithm 

will read the longitude, latitude, altitude, and camera 

pitch angle of each image and calculate (R1), (R2), (H1), 

(H2), and subsequently, the actual altitude difference 

(ΔHactual) between the base camera and new camera. 

Simply, closest images can be filtered by selecting new 

images with (ΔHactual) close to (ΔHcalc). To filter images, 

either by heading or by ΔH similarity, the inspector can 

set threshold for the tolerance of the heading or the 

altitude differences. With higher tolerance, images with 

larger change in perspective might be retrieved, and vice 

versa. 

This algorithm aims to enhance the speed and quality 

of UAV image retrieval for images with GPS information. 

In the case of operating the drone in GPS-denied zones, 

the conventional content-based image retrieval algorithm 

can be used to retrieve the closest image. 

2.4 New Image Registration 

This study introduces improved approach for image 

registration that leverages state-of-the-art deep learning-

based feature matching algorithms to simultaneously 

construct the 3D scene points and the 2D corresponding 

points of the new image without the need for pre-defined 

database of feature descriptors. 

As discussed in the “Overview of The Technique” 

section, three images are utilized to enable registering the 

new image: base image, its associated shadow image, and 

a retrieved new image. Robust feature matchers are 

required  to ensure extracting dense matches between the 

base, shadow, and new image even if the new image was 

captured under challenging conditions compared  to the 

base image. Deep learning-based feature matching 

algorithms are employed to ensure accurate and dense 

feature extraction, even in challenging conditions like 

varying lighting, perspective, and scale [15]. 

Accurately estimating pose of the new image enable 
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calculating the projection matrix. Then, the algorithm can 

retrieve ROIs selected from the base images and localize 

the same ROIs in the query images.  

3 Experimental Validation 

To validate the proposed approach, a lattice 

telecommunication cell tower in Waterloo (Ontario, 

Canada) was selected for testing the proposed algorithm. 

A cell tower was selected for validation as it is type of 

large and hard-to-access structures that requires 

systematic and frequent inspections due to its significant 

and importance as a vital telecommunication 

infrastructure. The selected tower contains multiple 

components with highly overlapping wiring and 

equipment. The cell tower height is approximately 47 

meters, with a base width of around 5.5 meters and a 

width of 4 meters at the location of the tower components. 

3.1 Base Cell Tower SfM Model 

To construct the base model, we used a commercial 

DJI Mavic 3 Enterprise drone to capture high-resolution 

images of the cell tower for the purposes of building high 

quality SfM model. The drone comprises dual cameras: 

wide-view camera for regular images, and tele camera 

with 7x optical zoom. Moreover, the drone is equipped 

with RTK-GPS. Accordingly, with each collected image, 

the set of extracted EXIF data contain information 

needed for executing the various steps of the proposed 

algorithm. The open-source tool, ExifTool [16], was used 

to retrieve EXIF data for each image. 

To build high quality SfM model, a set containing 

large number of high-quality and overlapping images of 

the cell tower was collected. For better results, the 

collected images should be sequenced and capturing the 

different components of the cell tower at different 

perspectives. To ensure systematic collection of images, 

a commercial software, Drone Harmony [17], for flight 

path planning and autonomous drone mission was 

utilized. The planned flight path for image collection was 

a helical path with a proper pitch distance between helix 

turns that ensures proper vertical overlap of images. The 

horizontal overlap of images is guaranteed as the drone 

is always directed towards the centre of the cell tower. 

The result of image collection step was a set of 409 

images fully covering all the regions of the cell tower. 

The collected images were then fed to an SfM platform 

to 3D reconstruct the cell tower. 

Different open-source and commercial SfM 

platforms were tested to create a 3D model of the tower 

and the platform with the highest quality was selected. In 

our study, a commercial SfM platform, One3D [18], was 

utilized to build the base SfM model. The software 

yielded a 3D reconstruction with relatively high quality 

compared to other tested platforms. The platform outputs 

the position and rotation of each camera which allows 

constructing the projection matrices of all base images.  

 
(a) 

 
(b) 

 
(c) 

 

 

 
(d) 

Figure 3: Base model 3D reconstruction (a) DJI 

Mavic 3D used in this study, (b) collected images 

and helical flight path (c) generated textured mesh 

(d) generated point cloud 

3.2 Retrieving Closest Cell Tower Image  

To validate the proposed image retrieval algorithm, a 

set of new images were collected at a different day and 

with different perspectives. New images were collected 

using wide-view camera and tele camera (7x zoom). In 

the post processing stage, the images were placed in the 

same folder directory of the base images to prepare for 

autonomous image retrieval. 

As shown in Figure 4,  the algorithm was able to 

successfully retrieve set of closest images relative to the 

base image. The algorithm retrieved the images taken 

with the wide-view camera and the tele camera. As 

shown in Figure 4, the base image was selected on the 

basis that the region to inspect located approximately at 

the center of the image, as shown within a bounding box 

in (a), the retrieved images clearly show that the main 

region of the base image is clearly shown in the retrieved 

images shown in (b). The inspector can retrieve more 

images by increasing the tolerance of heading and 

difference in altitude discussed in section “2.3 Retrieving 

Closest New Image(s)”. 
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Figure 4: Image Retrieval Algorithm Outputs. (a) 

base image, (b) example retrieved closest images. 

3.3 Image Registration Output 

The first step in this approach is to select local feature 

matching algorithms that can build dense 2D-to-2D 

common correspondences between base and shadow 

image and between base and new image. By common 

correspondences we mean features that are shown in the 

base, shadow image, and new image, simultaneously. 

Three state-of-the-art deep learning-based detector-

free local feature matching algorithms were employed in 

this study to build the dense correspondences: Efficient 

LoFTR [19], RoMa [20], and AspanFormer [21]. The 

RoMa model creates feature pyramids by integrating 

coarse-level features with fine-tuned specialized features, 

using classification-based loss for global matches and 

robust regression loss for fine-tuning to improve 

correspondence accuracy. Efficient LoFTR is an 

extension to LoFTR (Local Feature Matching with 

Transformers) algorithm. It enhances LoFTR by refining 

attention mechanisms and incorporating a two-stage 

correlation layer to enhance efficiency and accuracy in 

feature matching. AspanFormer is another transformer-

based algorithm that employs a hierarchical attention 

structure and adaptive attention spans to dynamically 

focus on relevant regions. This adaptive design ensures 

accurate feature matching across varying scales and 

challenging scenarios. Each algorithm approaches the 

feature matching problem from a different perspective. 

Hence, in this study, the three algorithms were cascaded 

together to build dense correspondences that are spread 

across the TRI. Figure 5 shows the results of common 

features between the base and shadow and between base 

and new image. It worth noting that all features captured 

in the non-overlapping regions in the three images were 

discarded to reduce outliers and that feature that are not 

common in the three images were excluded. 

 

Figure 5: Feature Matching Output. (a) base 

image with shadow image, and (b) base image 

with the new image. 

To build the 2D-to-3D correspondences required to 

localize the new image, the common features between the 

base and shadow images, show in Figure 5 (a), were 

triangulated to generate the 3D scene points and the 

common features between the base and new image, 

shown in Figure 5 (b) were extracted as the 2D 

projections. 

The PnP algorithm was employed to minimize the 

reprojection error of a geometric constrain relationship. 

For PnP solver, and in addition to the 2D-3D 

correspondences, the intrinsic matrix K for the camera is 

needed and was acquired by calibrating the drone camera 

in the lab using camera calibration board. Additionally, a 

PnP solver type should be specified. For this study, the 

Efficient PnP solver (EPnP [22]) was implemented 

within a Random Sample Consensus (RANSAC) 

framework, in order to handle outliers. 

To test the proposed algorithm, the estimated camera 

position of the new image should be compared to ground 

truth values. However, since new images have unknown 

ground truth values and base images have known 

calibrated poses, 10 base images were selected from the 

pool of base images and were treated as new images to 

evaluate the localization approach. Table 1 shows the 

absolute distance between actual and estimated camera 

positions.  
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Table 1. Evaluation of Image Localization Approach 

Images 

ID 

Error in Camera 

Position 

Error in Camera 

Rotation (degrees) 

1 0.066 0.739 

2 0.022 0.180 

3 0.090 0.078 

4 0.075 0.544 

5 0.078 0.094 

6 0.061 0.685 

7 0.017 0.314 

8 0.041 0.089 

9 0.094 0.371 

10 0.064 0.620 

It can be shown from Table 1 that the average error in 

camera position is around 0.06 m and the average error 

in rotation vector is 0.37°. This implies that the proposed 

dense feature matching-based camera pose estimation 

approach can accurately and reliably register new images. 

In addition to the 10 base images, the whole dataset 

was tested to investigate the ability of the methodology 

to register images with different view angles and 

perspectives. The average mean error in camera position 

was found to be 0.069 m and the mean error in rotation 

vector was found to be 0.41°. 

For the case of cell tower, and due to the fine and 

complex details on the structure, the image resolution 

was kept high during the feature matching process. This 

is needed to ensure building robust correspondences that 

guarantees high registration accuracy. High resolution 

images increase the inference time for deep learning-

based matchers. In our experiment, an NVIDIA 

GEFORCE RTX 3080 GPU with 12 GB VRAM was 

used. The inference time for each pair takes ~2.5 seconds 

using AspanFormer, ~7 seconds using EfficientLOFTR, 

and ~9 seconds using RoMA. This inference time makes 

this method not compatible with real-time applications. 

However, the method is designed to enhance offline 

visual inspection and ROI retrieval from new images. 

3.4 Localizing ROIs in New Cell Tower 

Images 

Once the new image is localized, the inspector can 

map ROIs from base (old) images to new images to track 

and assess the condition changes of the ROI. In this paper, 

and to avoid the need to interact with the 3D scene of the 

structure to identify the ROI, the algorithm is designed so 

that the inspector selects an ROI in the base image and 

the features within that ROI and their corresponding 

features in the shadow image will be selected and 

triangulated using both images’ projection matrices. The 

3D points of the ROI are then projected back in the new 

image using the calculated projection matrix estimated 

using during image registration. Figure 6 presents 

different examples of ROIs selected in the base image 

(with the letter B in the corner) and the corresponding 

ROI retrieved from the new image (with the letter N). The 

last column in Figure 6 (with letter Z) is for zoomed 

retrieved ROI. 

 

It worth mentioning that for this example the new 

image was selected from the set captured by the tele 

camera with 7x zoom. This reflects the robustness of the 

algorithm in localizing images and retrieving ROIs even 

in challenging scenarios and severe change in perspective, 

illumination, and scale. Figure 6 illustrates two main 

advantages of the proposed approach: 1) select ROIs 

within the region of focused inspection and retrieve the 

same ROI with clear details to assess condition 

inspection and temporal changes (as shown in first three 

rows of Figure 6), and 2) Inspect changes in asset 

dismantling or installation on the cell tower as shown in 

the last row where the retrieved ROI shows the change in 

asset installation on the selected region. 

 

Figure 6: ROI retrieval results. First column for 

selected ROI in base image (B). Second column 

for retrieved ROI from the new image (N). Third 

column for zoomed in view of the ROI (Z). 

4 Conclusion 

This study introduces and validates an innovative 

method for enhancing image localization and pose 

estimation by leveraging state-of-the-art feature 

matching algorithms. Key contributions in this study 

include: 
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1. An efficient image registration method that 

overcomes the limitations of existing methods that 

require database of feature descriptors associated 

with 3D scene points. 

2. Simplified metadata-based image retrieval 

algorithm for drone-collected images. 

3. Accurate ROI retrieval, allowing inspectors to 

select ROIs on a base image, and automatically 

retrieve and localize the same ROI in the new image, 

without the need to interact with the 3D 

reconstruction for ROI selection. 

The image localization algorithm achieved an absolute 

error in camera position of around 6 cm. Tests on new 

images from a 7x optical zoom camera shows the 

performance of the algorithm even in challenging 

scenarios of image environment. This approach 

significantly improves UAV-based inspections of large 

and hard-to-access infrastructure, offering broad 

applicability for diverse structures. 
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