
P2P: Point Cloud to Panel Layout Optimization

Nisha Deborah Philips, Yifang Liu, Nolan W. Hayes, Diana Hun, and Bryan P. Maldonado
Buildings and Transportation Science Division, Oak Ridge National Laboratory∗, United States of America

philipsn@ornl.gov, liuy5@ornl.gov, hayesnw@ornl.gov, hunde@ornl.gov, maldonadopbp@ornl.gov

Abstract -
Building envelope retrofits, despite their benefits on en-

hancing energy efficiency, progress slowly due to high oper-
ating costs. Overclad panelized systems present an attrac-
tive solution to make retrofits affordable and easy to install.
However, several stages of the retrofit process remain dis-
connected, suboptimal, and require significant human inter-
vention. This study aims to bridge the gap between digital
twin generation and overclad panel installation by automat-
ing the design of an optimal panel layout directly from a
building envelope point cloud. In this end-to-end approach,
the dimensional twin is generated by segmenting the facade
point cloud. The facade then undergoes a three-step process
to generate an optimized panel layout for integration with
automated placement systems.

Keywords -
Building envelope retrofit, Panel layout design, Constraint

satisfaction problem

1 Introduction
Rapid consumption of world energy has raised concerns

over the depletion of energy resources and the adverse
effects it has on the environment. With the construc-
tion industry accounting for 20–40% of the total energy
consumption [1], significant effort has been directed to
improve the energy efficiency of existing buildings. In
response, several government organisations have imple-
mented initiatives to enhance the energy performance of
buildings, while extensive research efforts have been made
to optimize the energy performance of existing structures.
Results have shown that energy consumption can signif-
icantly be reduced via retrofitting existing buildings as
opposed to constructing new ones [2].

With this surge of interest in retrofitting, leveraging
technologies such as Digital Twins, which are digital repli-
cas of physical objects, are imperative to optimize retrofits

∗Notice: This manuscript has been authored by UT-Battelle, LLC,
under contract DE-AC05-00OR22725 with the US Department of Energy
(DOE). The US government retains and the publisher, by accepting the
article for publication, acknowledges that the US government retains
a nonexclusive, paid-up, irrevocable, worldwide license to publish or
reproduce the published form of this manuscript, or allow others to do
so, for US government purposes. DOE will provide public access to
these results of federally sponsored research in accordance with the DOE
Public Access Plan (https://www.energy.gov/doe-public-access-plan).

and improve the energy efficiency of existing buildings [3].
Digital twins have a variety of applications from being in-
tegrated with Internet of Things (IoT) for data collection
to Artificial Intelligence (AI) for processing the collected
data [4]. In this context, digital twins are used to virtually
reconstruct a building and generate optimized panel layout
designs for each facade through an automated process.

Panel layout generation from architectural drawings
falls into two categories: “heavy” panel layouts for facades
with openings (windows, doors) and “light” panel layouts
for facades without such features [5]. Heavy solutions use
prefabricated panels, while light solutions require on-site
panel rework. Despite these differences, both types can
utilize the same optimization algorithm. Furthermore,
automated panel layout tools should be integrated with
existing technologies for digital twin generation like the
Automatic point Cloud Building Envelope Segmentation
(Auto-CuBES) [6] and for automated installation like the
Real-Time Evaluator (RTE) [7, 8] to create a unified retrofit
framework.

The panel layout designer could either be performed
manually by an architect or automated via AI. The man-
ual panel layout design is inherently labor intensive and
requires substantial amount of man-hours. Given these
challenges, advancements in computational methods have
paved the way for automating the panel layout design pro-
cess using AI. By transforming the problem into a mathe-
matical optimization framework, such as the bin packing
problem [9], it becomes possible to model the allocation of
panels as a computationally solvable task. The bin packing
problem, a well-known combinatorial optimization chal-
lenge, involves efficiently packing objects of varying sizes
into fixed-capacity bins, minimizing wasted space. For
panel layout design, this approach aims to maximize panel
coverage while adhering to the architectural constraints.

In this paper, we propose modeling panel layout design
as a meta-rectangle packing problem, extending traditional
rectangle packing [10] to non-uniform bins. This math-
ematical framing allows us to use AI-driven algorithms,
specifically Constraint Satisfaction Problem (CSP), to op-
timize panel packing. Section 2 describes existing and pro-
posed panel layout design algorithms. Section 3 presents
the implementation and analyzes execution time and cov-
erage. Section 4 concludes and outlines future work.

42nd International Symposium on Automation and Robotics in Construction (ISARC 2025)

1268

mailto:e.philipsn@ornl.gov
mailto:e.liuy5@ornl.gov
mailto:hayesnw@ornl.gov
mailto:hunde@ornl.gov
mailto:maldonadopbp@ornl.gov


2 Optimal panel layout design
2.1 Digital twin generation

Building envelope retrofit extensively uses point cloud
data to generate as-built dimensions of the building. How-
ever, the generation of digital twins from point cloud data
has traditionally been a manual process, making it labori-
ous and time-consuming. To address this limitation, ma-
chine learning methods, such as the Automatic point Cloud
Building Envelope Segmentation (Auto-CuBES) [6] algo-
rithm, can automate the generation of digital twin from
point cloud data.

Auto-CuBES divides the algorithm into sequential tasks
that generate a digital twin from building point cloud data
of 3mm density. Despite its computational efficiency
and accuracy, the input parameters scale linearly with
features, requiring considerable time for parameter cali-
bration. To address this bottleneck, the authors developed
Auto-CuBES++, a digital tool providing real-time parame-
ter calibration for building facade segmentation, available
for academic or commercial use [11]. This tool assists
users at every algorithm stage by visualizing results and
allowing parameter adjustments in real time without full
re-execution. The software also preserves execution states,
ensuring input parameters are retained and eliminating the
need for re-entry when rerunning the algorithm.

In addition to preserving the state of the run, Auto-
CuBES++ also stores the dimensions as a JSON file con-
taining the coordinates of the facade and its associated
openings. These JSON files facilitates validating the dig-
ital twin’s accuracy in virtualizing the building. The co-
ordinates in the JSON file are represented as tuples of real
numbers (𝑥, 𝑦, 𝑧), which are used to map the facade to
a Cartesian coordinate system. This representation pro-
vides a structured framework for panelizing the facade and
seamlessly integrating it with the automated installation
systems, such as the RTE.

2.2 Bin packing problems

Panelization, the key theme of this paper, is the process
of prefabricating building’s structural elements off-site and
assembling a panelized system to minimize on-site labor.
In a traditional panelized construction of a wall, the wall
is divided into a simple layout and the pre-manufactured
panels are assembled accordingly. However, traditional
techniques of panel layout design are not as straight for-
ward and often require human intervention to optimize the
generated layout design [5].

The panel layout design problem can be represented
as a Bin packing problem [9], and more specifically as a
Rectangle Packing Problem [12] since we focus on single-
wall arrangements. Rectangle Packing is an extension of
Bin packing that uses a single bin instead of multiple bins.

Discretize facade and set up CSP 

Constraint Satisfaction Problem (CSP architecture)

Model into a 2D
facade

Width (m)

H
ei

gh
t

(m
)

Opening (invalid)

Wall (valid)

Variable: 

Panels:

3
4 2

2
3

2

5
2

Constraints:
1.Must not exceed the
width and height of the

wall
2. Must not overlap

with openings
3. Must not overlap

with previously placed
panels

Grid cell

Domain: 
Valid panels for

each cell
Exterior (invalid)

Panel placement

Facade: [[x1,y1,z1], ..., [xn,yn,zn]]
Opening1: [[x1,y1,z1], ..., [xn,yn,zn]]
Opening2: [[x1,y1,z1], ..., [xn,yn,zn]]

...
Openingn: [[x1,y1,z1], ..., [xn,yn,zn]]

Facade modeling

JSON from Auto-CuBES++

Width (m)

H
ei

gh
t

(m
)

Backtracking with AC3

Place panel 
(constraint not satisfied)

Remove panel and 
prune domain

Place panel 
(constraint 
satisfied)

Repeat till 
no placement 

possible

Optimal solution

Width (m)

H
ei

gh
t

(m
)

Width (m)

H
ei

gh
t

(m
)

Width (m)

H
ei

gh
t

(m
)

Width (m)

H
ei

gh
t

(m
)

Figure 1. Facade to panel layout

As Bin packing problems are NP-hard, Rectangle Packing
Problems inherit this computational complexity and are
also NP-complete [10].

These Rectangle Packing Problems can be solved using
deterministic algorithms, which use variables and policies
to explore the solution space [10], and non-deterministic
algorithms, such as Genetic Algorithm (GA) [13] and
Simulated Annealing [14]. While deterministic ap-
proaches rely on predefined policies and constraints, non-
deterministic methods leverage relationships between vari-
ables as data structures to search for optimal solutions.

2.3 Proposed panel layout design algorithm

This paper addresses panel packing using a determinis-
tic algorithm, specifically the Constraint Satisfaction Prob-
lem (CSP). It combines backtracking [15] and arc consis-
tency (AC-3) [16] to efficiently explore the solution space.
Backtracking methodically scans solutions, reverting deci-
sions that violate constraints, while AC-3 prunes infeasible

42nd International Symposium on Automation and Robotics in Construction (ISARC 2025)

1269



values to simplify the problem. Figure 1 illustrates this
hybrid process, comprising three stages: 1) Facade model-
ing, 2) CSP formulation, and 3) solving via backtracking.

2.3.1 Facade modeling

Initially, the algorithm processes the JSON files gener-
ated by Auto-CuBES++ and extracts the geometric data
required for facade modeling. Auto-CuBES++ generates
two types of JSON files, one comprising of the facade
boundary points, and another set of rectangular prism files
for each individual opening in the facade. The algorithm
transforms the extracted geometric data from the 3D space
to a 2D representation based on the following rules:

• Points (𝑥, 𝑧) for a facade parallel to the 𝑥 and 𝑧 axes

• Points (𝑦, 𝑧) for a facade parallel to the 𝑦 and 𝑧 axes

2.3.2 CSP formulation

Following the facade modeling, the CSP problem for
meta-rectangle packing is formulated. In a traditional
rectangle packing algorithm, a set of rectangular items
are packed into a rectangular box. However, due to the
algorithm being applied to buildings, the rectangular box
is adapted to a polygonal facade with or without open-
ings. Additionally, the rectangular items are customized
to panels of varying sizes that are packed on the wall.

Every CSP architecture is uniquely identified by a set
of variables, the domains associated with the variables
and a set of constraints. In the initial stage, the algorithm
assumes a simplified scenario where the grid represents a
facade without any openings (light panel layout design).
In this case, each cell in the grid is valid, and the algorithm
proceeds by assigning panels from the available domain
to each of these cells. The process involves evaluating the
constraints to ensure that the panels meet the architectural
requirement of not aligning with the openings.

Once this basic configuration is established, the algo-
rithm is adapted to handle the more complex scenario in-
volving openings (heavy panel layout design). Openings,
such as windows or doors, alter the layout of the facade,
and certain cells are no longer suitable for panel place-
ment. Each cell can fall under one of the categories shown
in Table 1. Based on this information, the grid is refined
to include only the valid cells, more specifically the wall
points, so cells falling under any of the other categories
are marked invalid and a panel is not placed on those cells.

The algorithm generates solutions that satisfy a set
of panel placement constraints, as shown in Algo-
rithm 1. Firstly, is within bounds() verifies that panels
are placed only on valid cells within the grid. Secondly,
does not overlap() ensures that newly placed panels do
not overlap with existing panels or openings. Finally, for

Table 1. Grid cells vs Validity
Type of grid cell Validity

Only wall Valid
Only opening Invalid
Only exterior Invalid

Wall and opening Invalid
Wall and exterior Invalid

Opening and exterior Invalid

light panel layouts, does not align() checks that panel
edges do not align with opening edges to prevent potential
air/heat leakage points.

Algorithm 1 Valid panel placement check
Require: Wall, Cell (𝑥, 𝑦), Panel
Ensure: Panel satisfies or violates constraints

1: Function Constraints(wall, 𝑥, 𝑦, panel):
2: for each cell in panel.area on wall do
3: if is within bounds(𝑥, 𝑦, panel) and

does not overlap(𝑥, 𝑦, panel)) and
does not align with window(𝑥, 𝑦, panel))
then

4: return True
5: else
6: return False
7: end if
8: end for

2.3.3 Backtracking with Arc Consistency

Following the initialization of the grid and the CSP ar-
chitecture, Backtracking, one of the most commonly used
algorithms, was employed to solve the problem. This al-
gorithm exhaustively searches the solution space to find
assignments or, in this case, panel placements that satisfy
the constraints. However, due to the large search spaces
involved in most CSP problems, the algorithm could get
computationally expensive. Therefore, to improve the ef-
ficiency of the algorithm, backtracking is integrated with
AC-3, thereby reducing the complexity of the problem by
pruning invalid panel assignments. This hybrid approach
is well suited for problems where constraints are heavily
co-dependent, as is the case for the panel layout design
optimization problem.

As shown in Algorithm 2, Backtracking implements a
Depth First Search (DFS) to explore possible solutions.
Given grid cells, panel types, and placement rules, the
algorithm traverses each cell and attempts to place the
largest valid panel from the cell’s domain. If the placement
satisfies all constraints, the PlacePanel() function marks
the cells as occupied. If invalid, RemovePanel() reverts
the placement and the algorithm backtracks to try the next
panel from the domain.

While backtracking ensures completeness, it’s limited
by exponential growth in the solution space. To improve

42nd International Symposium on Automation and Robotics in Construction (ISARC 2025)

1270



Algorithm 2 Backtracking for meta-rectangle packing
Require: Wall dimensions, panels, openings
Ensure: Maximum coverage with minimum panels

1: Initialize valid wall grid and domains
2: Apply AC-3 to enforce initial arc consistency
3: Call Backtrack(wall, panels, 𝑥 = 0, 𝑦 = 0,

panel id=1)
4:
5: Function Backtrack(wall, panels, 𝑥, 𝑦, panel id):
6: if 𝑦 ≥ wall.height then
7: Update best grid and return
8: end if
9: if 𝑥 ≥ wall.width then

10: Backtrack(wall, panels, 𝑥 = 0, 𝑦 + 1, panel id)
11: return
12: end if
13: if wall.current grid[𝑦][𝑥] ≠ 0 or (𝑥, 𝑦) ∈

wall.openings then
14: Backtrack(wall, panels, 𝑥 + 1, 𝑦, panel id)
15: return
16: end if
17: for panel ∈ SortBySize(wall.domains[(𝑦, 𝑥)]) do
18: if Constraints(wall, 𝑥, 𝑦, panel) then
19: PlacePanel(wall, 𝑥, 𝑦, panel, panel id)
20: Apply AC-3 for arc consistency
21: Backtrack(wall, panels, 𝑥+ panel.width, 𝑦,

panel id+1)
22: RemovePanel(wall, 𝑥, 𝑦, panel)
23: end if
24: end for
25: Backtrack(wall, panels, 𝑥 + 1, 𝑦, panel id)
26:
27: Function PlacePanel(wall, 𝑥, 𝑦, panel, panel id):
28: for each cell in panel.area do
29: wall.current grid[cell]← panel id
30: end for
31: wall.panel count← wall.panel count + 1
32:
33: Function RemovePanel(wall, 𝑥, 𝑦, panel):
34: for each cell in panel.area do
35: wall.current grid[cell]← 0
36: end for
37: wall.panel count← wall.panel count - 1

Algorithm 3 Arc Consistency (AC-3)
1: Initialize queue with all cells from the grid
2: while queue is not empty do
3: (𝑥, 𝑦) ← dequeue(queue)
4: if Revise(wall, 𝑥, 𝑦) then
5: for neighbor ∈ GetNeighbors(𝑥, 𝑦) do
6: Enqueue(neighbor)
7: end for
8: end if
9: end while

10:
11: Function Revise(wall, 𝑥, 𝑦):
12: revised← false
13: for panel ∈ wall.domains[(𝑦, 𝑥)] do
14: if not Constraints(wall, 𝑥, 𝑦, panel) then
15: Remove panel from wall.domains[(𝑦, 𝑥)]
16: revised← true
17: end if
18: end for
19: return revised

efficiency, we implemented AC-3 pre-processing to prune
inconsistent panels from a cell’s domain after successful
placement. As shown in Algorithm 3, AC-3 initializes a
queue with all grid cells and iteratively prunes the domains
of each cell and its neighbors, removing invalid panel con-
figurations. This maintains local consistency and reduces
the search space size.

2.3.4 Complexity Analysis

The backtracking approach remains exponential in com-
plexity as the number of valid grid cells increases. AC-
3 improves efficiency by dynamically reducing domain
sizes, but its impact depends on constraint density. Two
key factors influence performance:

Facade Shape Complexity: Complex geometries in-
crease both the search space and constraint network
density, resulting in higher AC-3 processing over-
head.

Panel Size Variety: A larger panel dimension set in-
creases domain sizes, creating more potential assign-
ments for backtracking. Though AC-3 prunes infeasi-
ble configurations, it cannot eliminate the problem’s
inherent exponential worst-case growth.

3 Results
The algorithm begins by identifying and importing the

JSON files containing the dimensions for a desired facade
and its associated openings. These files are then pre-
processed to ensure they are aligned either with the (𝑥, 𝑧)
plane or the (𝑦, 𝑧) plane depending on the orientation of
the selected facade. For this study, the algorithm is tested
on both a facade aligned with the (𝑥, 𝑧) plane and another
aligned with the (𝑦, 𝑧) plane, as depicted in Figure 2.

Following the pre-processing stage, the corresponding
2D points are extracted from the aligned JSON files. These
points are used to map the grid onto a cartesian space
without loss of any spatial data. This mapping ensures
accurate representation of the facade that would serve as
an input to the CSP architecture.

Additionally, due to the complexity added by the open-
ings, the algorithm was run independently for two cases: 1)
Facades without openings (light solution), and 2) Facades
with openings (heavy solution). For both cases, the wall
and opening dimensions in the 2D space were scaled to
three different units: millimeters (mm), centimeters (cm),
and decimeters (dm). This multi-scale analysis highlights
the relationship between grid density and computational
time. Notably, as the grid density increases tenfold (e.g.,
transitioning from cm to mm scales), the execution time
also increases approximately tenfold, demonstrating the
algorithm’s scaling behavior.

42nd International Symposium on Automation and Robotics in Construction (ISARC 2025)

1271



Figure 2. Dimensional facades extracted with Auto-
CuBES++ and pre-processed

3.1 Facade without openings

After the initial set up, the inputs for the CSP architec-
ture are set up and initialized. As elaborated in Section 2,
the inputs provided to the CSP algorithm are the following:

Grid resolution: determines the scale of each grid cell
onto which the facade is mapped. It can take up any
value from {10, 100, 1000} depending on the dimen-
sions the facade is scaled to: mm, cm, or dm.

Panel sizes: customized values based on the facade under
consideration. The height of each panel is fixed to
2.44 m (8 ft), while the width varies in factors of the
grid resolution, typically multiples of 1.22 m (4 ft).

Facade grid: is the 2D cartesian representation of the
facade generated by Auto-CuBES.

Following the set up of these parameters, the algorithm
tackles the problem of mapping the facade to a grid. In
order to adapt the rectangle-packing problem to the meta-
rectangle packing problem, the area where the panels can
be placed has to be clearly defined. This is achieved via
the Shapely package in Python [17]. The 2D points ex-
tracted from the JSON files generated by Auto-CuBES are
mapped onto a rectangular grid mimicking a rectangular
bin. Due to the algorithm initially tackling facades with-
out any opening, the valid grid is initialized to the entire
facade area.

After grid initialization, each cell receives a list of avail-
able panels. The algorithm evaluates three grid resolu-
tions: decimeters (dm), centimeters (cm), and millimeters
(mm). Three panel sizes (8×4 ft, 8×8 ft, and 8×12 ft)
are scaled to match each resolution: 24×12, 24×24, and
24×36 dm; 240×120, 240×240, and 240×360 cm; and
2400×1200, 2400×2400, and 2400×3600 mm.

In due course, the backtracking algorithm is triggered to
explore potential solutions for all the three grid resolutions.
This process iteratively constructs panel layouts by placing
the panel with the largest area from each cell’s domain.
while also systematically retracting and reevaluating the
assigned panel positions to maximize coverage. As this
problem was modeled as an optimization problem, the final
result that is visualized aims to maximize the coverage
of the valid grid in terms of cells while minimizing the
number of panels used.

3.2 Facade with openings

The setup for this case builds on Section 3.1 but accounts
for openings like windows and doors. The wall geometry
is read from a JSON file containing the facade’s polyg-
onal representation, and its integrity is ensured through
a validation and repair process. Similarly, all opening
geometries are dynamically loaded from matching files,
each representing an opening in the wall, and undergo the
same validation and repair procedure to ensure they are
well-formed polygons.

After preparing the wall and opening polygons, the valid
area is computed by subtracting the opening polygons from
the wall polygon using a geometric difference operation.
This process removes areas covered by openings, ensuring
panels are not placed over windows or doors. Additionally,
cells along the facade’s edges are invalidated to prevent
panels from extending beyond the wall’s dimensions. The
resulting valid area excludes both openings and boundary
cells, creating an optimized grid for panel placement.

The algorithm is then run for three facades at dif-
ferent grid resolutions, including one from a two-story
experimental building at Oak Ridge National Labora-
tory (ORNL), known as the Flexible Research Platform 2
(FRP2), as illustrated in Fig.3. The other two facades are
from a single-story residential building being retrofitted
by the Knoxville’s Community Development Corporation
(KCDC). The two facades chosen from the single-story
building cover the cases of facades being aligned with the
𝑥 − 𝑧 plane (KCDC 21) and the 𝑦 − 𝑧 plane (KCDC 11), as
illustrated in Fig.4 and Fig.5, respectively. In these figures,
part (a) shows the panel placement with openings, while
part (b) assumes no openings, with panels placed to fully
cover any openings. These facades were converted into all
three grid resolutions being tested and evaluated based on
the time taken for initialization, valid grid computation,

42nd International Symposium on Automation and Robotics in Construction (ISARC 2025)

1272



Table 2. Result: Panel placement execution time

Dimension Initializing
(sec)

Valid grid
computation (sec)

Backtracking
+ AC-3 (hrs)

Coverage
(%)

Number of
panels used

FRP2 (with opening) Excluding openings
Decimeter (dm) 1.87 0.44 2.38 60.51 10
Centimeter (cm) 69.89 36.33 17.31 54.27 10
Millimeter (mm) 2805.06 2595.82 >30 ∼55 10

FRP2 (without opening)
Decimeter (dm) 2.05 1.03 1.4 76.24 12
Centimeter (cm) 13.96 36.65 10.89 75.22 15
Millimeter (mm) 479.21 3392.06 >30 ∼ 75 15

KCDC 11 (with opening) Excluding openings
Decimeter (dm) 0.20 0.14 0.01 25.2 2
Centimeter (cm) 8.84 9.47 0.48 23.06 2
Millimeter (mm) 822.82 1111.53 28.11 22.87 2

KCDC 11 (without opening)
Decimeter (dm) 0.55 0.51 0.63 57.44 3
Centimeter (cm) 7.26 11.52 9.33 55.54 3
Millimeter (mm) 533.11 1048.32 >30 ∼ 55 3

KCDC 21 (with opening) Excluding openings
Decimeter (dm) 0.71 0.32 0.02 43.8 7
Centimeter (cm) 24.29 29.52 0.76 39.76 7
Millimeter (mm) 1948.51 1929.85 31.2 39.48 7

KCDC 21 (without opening)
Decimeter (dm) 1.42 0.90 0.22 77.77 6
Centimeter (cm) 18.93 38.09 2.93 69.81 6
Millimeter (mm) 867.78 1806.78 >30 ∼ 70 6

and the execution of the backtracking algorithm with AC-
3, as shown in Table 2. The results in Table 2 correspond
to the panel placements shown in Fig. 3, Fig. 4, and Fig. 5,
with each row in the table corresponding to a specific fa-
cade and scenario. The first set of rows corresponds to the
FRP2 facade, shown in Fig. 3. The second set corresponds
to the KCDC 11 facade, shown in Fig. 4. And the final
set corresponds to the KCDC 21 facade, shown in Fig. 5.
Each row in the table also presents the execution times,
coverage percentages, and number of panels used for the
different grid resolutions, reflecting the specific conditions
for each facade in the corresponding figures.

The backtracking algorithm evaluates each panel in ev-
ery cell’s domain, leading to exponential complexity as
grid resolution increases. At millimeter resolution, both
initialization and valid grid computation times rise sig-
nificantly compared to decimeter and centimeter scales,
sometimes exceeding 30 hours even with AC-3 as shown
in Table 2. To mitigate this, a 20% sampling rate is applied
for constraint satisfaction, balancing efficiency and accu-
racy—higher rates caused excessive panel overlap, while
lower rates added unnecessary overhead without notable
accuracy gains.

The results from the algorithm were evaluated by fo-
cusing on two key attributes: the optimization objectives,
such as total area coverage, the number of panels used,
as outlined in Table 2 and the execution times, namely
the time taken to initialize, compute the valid grid, and

Figure 3. Panelized FRP2 with and without openings

Figure 4. Panelized KCDC 21 with and without
openings

42nd International Symposium on Automation and Robotics in Construction (ISARC 2025)

1273



execute the algorithm.
Coverage is the primary objective of the algorithm, with

the aim of maximizing the valid area of the grid that cor-
responds exclusively to the facade. The algorithm ensures
that as much of the facade as possible is covered effec-
tively, while excluding non-relevant areas such as the attic
as shown in Fig. 4, where wall insulation is not required.
Additionally, to improve efficiency, the algorithm was de-
signed to minimize the number of panels used. This dual-
objective optimization assessment provides a comprehen-
sive evaluation of the algorithm’s capability in balancing
these competing goals.

In Figures 3, 4, and 5 coverage is assessed with and
without considering facade openings. In part (a), panels
avoid overlapping openings based on constraint enforce-
ment (Algorithm 1), resulting in more panels and gaps
around these regions. In part (b), openings are ignored,
leading to fewer panels and full facade coverage, including
areas originally designated as openings.

This experiment revealed that maximizing coverage be-
comes notably more difficult when openings, such as win-
dows and doors, are present. These openings create irreg-
ularities and constraints on the facade, which often result
in uncovered regions due to the limitations of panel dimen-
sions and placement options. This challenge is especially
pronounced for facades with irregular shapes, which re-
quire the algorithm to navigate a more complex solution
space. As a result, compromises must be made in either
coverage or panel efficiency, as illustrated in the left plots
of Fig.3 and Fig.4. These plots clearly show the trade-offs
the algorithm faces when balancing the competing goals
of maximizing coverage while minimizing the number of
panels used, especially in the presence of openings and
irregular facade shapes.

A key challenge in the results is the unoccupied panel
areas, caused by placement restrictions around openings
and fixed panel dimensions. While the algorithm opti-
mizes coverage, irregular facades and panel limitations
prevent perfect coverage. Future improvements could in-
clude more flexible panel shapes, such as modular panels,
or allowing for smaller panel sizes that could better adapt
to the irregularities of the facade.

Execution time, as a secondary evaluation metric, scales
predictably with grid resolution. As the density of the
grid increases, the execution time also increases, as shown
in Table 2, reflecting the greater computational effort re-
quired to evaluate the finer cells of the grid. This trend
highlights the increased computational burden when deal-
ing with higher-resolution grids. In some millimeter-scale
cases, the combination of higher grid granularity and the
algorithm’s complexity has led to execution times exceed-
ing 30 hours, emphasizing the significant computational
challenges posed by high-resolution analyses.

Figure 5. Panelized KCDC 11 with and without
openings

In conclusion, the algorithm successfully addresses the
dual objectives of maximizing the coverage of the facade
and minimizing the usage of the panels, even when faced
with the restrictions introduced by openings and irregu-
lar facade geometries. Looking ahead, the method could
be applied to more complex building structures, such as
multi-story buildings with varying facade shapes, by fur-
ther enhancing the algorithm’s ability to accommodate
different panel configurations and structural constraints.
Future improvements, such as the introduction of more di-
verse panel sizes or the further optimization of execution
times, could further enhance its applicability to a wider
range of facade types and building geometries.

4 Conclusion
Our research highlights a significant void in existing

systems capable of retrofitting buildings through an end-
to-end process—from virtualizing point cloud data to au-
tomatically generating panel layouts for each facade to
facilitate panel installation. The goal of this study was
to bridge the gap between building envelope digital twin
generation for panelized systems with automatic tools for
prefabricated panel installation using a novel digital tool
for automated panel layout design. We propose a three
step process to achieve the this: Facade Modelling, CSP
Formulation, and Backtracking with AC-3. The proposed
algorithm was demonstrated on a variety of facades from
a simple rectangle to more complex polygons.

Operationally, the results of the algorithm are also quite
robust, with panel layouts being generated in under two
or three hours, which is a significant improvement com-
pared to the days typically required for manual creation.
Consequently due to the application of a backtracking al-
gorithm for solving the meta-rectangle packing problem,

42nd International Symposium on Automation and Robotics in Construction (ISARC 2025)

1274



the user is also presented a variety of optimal solutions to
choose from, depending on the optimization factor; rather
than a single solution as is the case with other rectan-
gle packing algorithms. While the proposed algorithm
demonstrates efficient performance, there is always scope
for improvement. Future work involves adapting the al-
gorithm to incorporate a dynamic backtracking algorithm
with memorization. This would allow the storage of re-
sults of previously calculated sub-problems, facilitating
efficient domain pruning whilst reducing redundant com-
putations. Such an approach has the potential to signifi-
cantly improve the algorithm’s efficiency and scalability,
paving the way for the development of robust solutions in
facade panelization and building retrofitting workflows.

Acknowledgement
This research was sponsored by the Laboratory Directed

Research and Development Program of Oak Ridge Na-
tional Laboratory, managed by UT-Battelle, LLC, for the
U. S. Department of Energy, and used resources at the
Building Technologies Research and Integration Center.

References
[1] Luis Pérez-Lombard, José Ortiz, and Christine Pout.

A review on buildings energy consumption informa-
tion. Energy and buildings, 40(3):394–398, 2008.

[2] Zhenjun Ma, Paul Cooper, Daniel Daly, and Laia
Ledo. Existing building retrofits: Methodology and
state-of-the-art. Energy and buildings, 55:889–902,
2012.

[3] Arva Arsiwala, Faris Elghaish, and Mohammed Zo-
her. Digital twin with Machine learning for predictive
monitoring of CO2 equivalent from existing build-
ings. Energy and Buildings, 284:112851, 2023.

[4] Chukwuka Christian Ohueri, Md Asrul Nasid Mas-
rom, and Taki Eddine Seghier. Digital twin for decar-
bonizing operating buildings: A systematic review
and implementation framework development. En-
ergy and Buildings, page 114567, 2024.

[5] Michel Aldanondo, Julien Lesbegueries, Andrea
Christophe, Élise Vareilles, and Xavier Lorca. Build-
ing insulation renovation: a process and a software
to assist panel layout design, a part of the ISOBIM
project. In ISARC 2023-40th International Sympo-
sium on Automation and Robotics in Construction,
pages 40–47, 2023.

[6] Bryan P Maldonado, Nolan W Hayes, and Diana
Hun. Automatic point Cloud Building Envelope Seg-
mentation (Auto-CuBES) using Machine Learning.

In Proceedings of the 40th International Symposium
on Automation and Robotics in Construction, pages
48–55, 07 2023. doi:10.22260/ISARC2023/0009.

[7] Nolan W. Hayes, Bryan P. Maldonado, Diana Hun,
and Peter Wang. Real-time evaluator to optimize
and automate crane installation of prefabricated com-
ponents. In Proceedings of the 40th International
Symposium on Automation and Robotics in Con-
struction, pages 192–199, Chennai, India, July 2023.
doi:10.22260/ISARC2023/0028.

[8] Diana Hun, Peter Lee-shein Wang, Nolan W Hayes,
Bryan Maldonado Puente, Philip R Boudreaux, and
Stephen M Killough. Real-Time Evaluator to Op-
timizing Prefab Retrofit Panel Installation, June 27
2024. US Patent App. 18/509,721.

[9] Andrea Lodi, Silvano Martello, Michele Monaci,
and Daniele Vigo. Two-dimensional bin packing
problems. Paradigms of combinatorial optimiza-
tion: Problems and new approaches, pages 107–129,
2014.

[10] Richard E Korf. Optimal Rectangle Packing: Initial
Results. In ICAPS, pages 287–295, 2003.

[11] B. P. Maldonado. Automatic Point Cloud Building
Envelope Segmentation (AutoCuBES). Computer
Software. Registration Number: TXu002412058,
Dec 2023. URL https://doi.org/10.11578/
dc.20231214.1.

[12] Eric Huang and Richard E Korf. Optimal rectangle
packing: An absolute placement approach. Journal
of Artificial Intelligence Research, 46:47–87, 2013.

[13] Andreas Bortfeldt. A genetic algorithm for the two-
dimensional strip packing problem with rectangular
pieces. European Journal of Operational Research,
172(3):814–837, 2006.

[14] Kevin Tole, Rashad Moqa, Jiongzhi Zheng, and Kun
He. A simulated annealing approach for the circle bin
packing problem with rectangular items. Computers
& Industrial Engineering, 176:109004, 2023.

[15] Peter Van Beek. Backtracking search algorithms.
In Foundations of artificial intelligence, volume 2,
pages 85–134. Elsevier, 2006.

[16] Richard J Wallace. Why AC-3 is almost always better
than AC-4 for establishing arc consistency in CSPs.
In IJCAI, volume 93, pages 239–245, 1993.

[17] Sean Gillies, Casper van der Wel, Joris Van den
Bossche, Mike W. Taves, Joshua Arnott, Brendan C.
Ward, and others. Shapely, August 2024. URL
https://github.com/shapely/shapely.

42nd International Symposium on Automation and Robotics in Construction (ISARC 2025)

1275

https://doi.org/10.22260/ISARC2023/0009
https://doi.org/10.22260/ISARC2023/0028
https://doi.org/10.11578/dc.20231214.1
https://doi.org/10.11578/dc.20231214.1
https://github.com/shapely/shapely

