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Abstract -

In the field of building renovation with prefabricated mod-
ules, accurately locating and identifying connectors’ posi-
tions and orientations is an essential technological challenge.
For building renovation with prefabricated modules, tradi-
tional methods like total stations are not only time-consuming
but also highly dependent on experienced technicians. How-
ever, previous research has proven that ApriTtag tags can be
effectively used in building measurements. This paper pro-
poses a refined AprilTag detection pipeline that integrates
machine learning techniques, significantly improving detec-
tion accuracy. Moreover, this process can be easily used
by non-experts making it more accessible and less time-
consuming.
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1 Introduction

Existing building stock renovation is a critical aspect of
construction automation. For instance, accurately deter-
mining the position of connectors is essential for the instal-
lation of prefabricated panels on building exteriors. How-
ever, traditional measurement methods, such as the use of
total stations(see [1]), have several limitations, including
being time-consuming, requiring skilled technicians, etc.
To address these challenges and leverage the advantages of
automation, the integration of computer vision techniques
with a visual fiducial system is suggested as a viable so-
lution. In this paper, we propose a refined Apriltag(see
[2]) detection pipeline integrated with machine learning to
tackle the above problem. Figure 1 shows its architecture.
We will first discuss the research gaps in the accuracy of
AprilTag localization. Then we will introduce the compo-
nents of the pipeline in detail. The experiments in section
4 show that our refined pipeline has very good accuracy.
This research is part of the ENSNARE project[3].

2 Research gaps
The AprilTag is widely applied across various domains,

including robot navigation & localization, industry au-
tomation, and augmented reality. However, existing re-
search puts limited focus on localization accuracy when
employing AprilTags. López-Cerón et al.[4] conducted
an analysis of AprilTag’s accuracy, but their study was
limited to camera-to-target distances of no more than 6
meters. Kallwies et al.[5] extended their testing range to
18 meters, yet their focus was on pixel-level errors, rather
than millimeters. Similarly, Olson et al.[6] investigated
distances up to 80 meters, but their error tolerance is in
meters. Additionally, research on the large-scale layout of
AprilTags is very scarce. Kallwies et al.[5] constructed a
simulated 7 x 22 grid with 152 AprilTags, each 13 cm in
size. Beyond this study, there is a lack of research explor-
ing the potential and challenges of large-scale AprilTag
layouts. To sum up, there is a notable gap in research
and applications concerning the combination of high ac-
curacy and the large-scale layout of AprilTags. But in
our context, we mostly applied AprilTags in large-scale
outdoor environments and want to achieve accuracy that
is comparable to or even beyond traditional methods like
total-station measurement. Therefore, this paper aims to
bridge this gap.

Figure 1. A flowchart outlining the pipeline
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3 AprilTag detection pipeline
As in previous experiences with OpenCV and AprilT-

ags, we calibrated a camera, in our case a Sony A7R4
[7] with different lenses using a checkerboard in ambient
lighting conditions. For each focal length, we took pic-
tures in different camera positions and orientations while
making sure that the checkerboard eventually covered the
entire image frame. Finally, we loaded all the pictures
to the MATLAB R2023b Camera Calibration toolbox and
only left around 15 pictures that had the smallest pixel
errors as our final calibration candidates.

Before using the AptilTag detector, we first Preprocess
the images with the following steps:

1. Removing outliers: We filter out the pictures that
have undetected tags (false negative) and non-existent
tags (false positive).

2. Minimizing image distortion: cv2.undistort func-
tion is applied to undistort images using the camera
calibration and distortion matrix from the calibration
step. This step can increase the detection rate.

3. Grayscale conversion: We convert the images to
the acceptable format of AprilTag Detector, which is
grayscale.

4. De-noising: A Gaussian filter with kernel size 5 x 5
is applied to reduce the sensor noise of the camera.

5. Sharpening: We subtract the smoothed image of the
last step from the original image

For the AprilTag detection algorithm, we used the
AprilTag3(see [8]) library of Python. The motivation is
that the Python bindings allow efficient development with
powerful libraries, such as NumPy. We mostly use the
default parameters of the AprilTag3 binder.

Using a Coordinate transformation one can express
the pose of tags in the coordinate frame built up at
the center of the bottom left tag. To do so, we first
obtain the rotation matrix and translation vector for
each tag from the tag frame to the camera frame using
cv2.SOLVEPNP IPPE SQUARE function. With the bot-
tom left tag as tag 1 and the other as tag 2, tag 2’s position
and orientation(in the new coordinate system) can be ex-
pressed using the formulas below:

𝑃𝑡𝑎𝑔2 = 𝑅𝑇
1 ∗ (𝑡2 − 𝑡1) (1)

𝑅2 |1 = 𝑅𝑇
1 ∗ 𝑅2 (2)

where 𝑅1 is the rotation matrix of tag 1. 𝑡2 and 𝑡1 are the
translation vector of tag 2 and tag 1 respectively. 𝑅2 |1 is
the rotation matrix of tag 2 w.r.t tag 1. The Euler angles
of tag 2 can be further computed from 𝑅2 |1.

A Postprocessing was necessary because, we took 10
to 200 pictures of the tags, which means we have lots of
measurements. In the end, we only need one final and

accurate measurement. Therefore, the postprocessing is a
crucial step of the whole pipeline. We took two strategies
for postprocessing:

1. Mean values: The mean value is used when there
are not many measurements or DBSCAN can’t find a
valid dense area of the measured point cloud.

2. DBSCAN clustering: By visualizing the positions of
detected tags’ center, there are usually some outliers
and also a dense area of point cloud (See Figure 2).
To filter out the outliers, we use DBSCAN(see [9]) to
find the core measurements.

Figure 2. Point cloud visualization

We also implemented two other strategies based on the
ranking of pose err and blur scores.

1. Pose err ranking: pose err represents the object-
space error of the estimation. The idea is to only
select the tag measurements that have lower pose err.

2. Blur score ranking: Blurry images can contribute to
poor detection accuracy. To avoid blurry images, we
first mask the pictures and only keep AprilTags be-
cause those squares are our ROIs(Region of Interest).
Then we compute the total variance of the laplacian
of ROIs using cv2.Laplacian as the blur score for the
image. Eventually, we only compute the mean of less
blurry pictures.

The performance comparison of the above 4 strategies
will be introduced later.

3.1 Machine learning correction

The AprilTag detection pipeline is highly susceptible to
lighting conditions which can influence its performance
and these ”noises” are hard to determine and control. We
have devised a neural network trained on a dataset of hun-
dreds of images, such as the one shown in Figure 4c,
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taken in different lighting conditions and positions. Es-
sentially, it is trained to predict the correct ground truth
values based on the experimental observations. The idea
is that the neural network can then improve on the values
predicted by the AprilTag detection pipeline. The dataset
consists of ground truth values of different AprilTags in
different images such as their 3d coordinates as well as
camera information. Our approach is inspired by [10].

The neural network is implemented in Python version
3.10.10 using Tensorflow(See [11]). We have used a stan-
dard fully connected feed-forward network with 2 hidden
layers as shown in Figure 3.

Figure 3. Network Architecture

The dataset is first randomly shuffled to increase the
uniformity of the dataset. We split the dataset randomly
into a training set and a testing set. The size of the train-
ing set is 95% of the original dataset. We then initialize
the neural network with the following parameters: we use
Adamax for the optimization process along with l2 regu-
larization with regularisation constant 0.01234. We use
mean absolute error for the loss function and finally, we
set the batch size to 40 and train the model for 200 epochs.

4 Experiments and results

The proposed pipeline was tested in simulation, indoor
and outdoor environments respectively.

(a) simulation

(b) indoor (c) outdoor

Figure 4. Example pictures of real-world and simu-
lation experiments

4.1 Simulation testing

For simulation, we use Blender(See [12]) to generate
synthetic images (See Figure 4a). The first part of Table
1 shows that using mean values or DBSCAN outperforms
the rest two postprocessing methods. In addition, without
the influence of environmental noise, our pipeline reached
millimeter-level accuracy.

Table 1. The results of proposed pipeline
Simulation result

Mean DBSCAN Pose err Blur score
Δx/mm 0.40 0.40 0.40 0.40
Δy/mm -0.45 -0.36 -0.45 -0.45
Δz/mm -0.10 0.10 -0.10 -0.10
Δxy/mm 0.60 0.54 0.60 0.60
Δxyz/mm 0.61 0.55 0.61 0.61
Δ𝛼/ ◦ 0.04 0.07 0.04 0.04
Δ𝛽/ ◦ 0.03 0.05 0.03 0.03
Δ𝛾/ ◦ 0.00 0.00 0.00 0.00

Indoor experiment
Mean DBSCAN Pose err Blur score Total station

Δx/mm 0.82 -0.43 1.50 1.71 0.60
Δy/mm 2.23 1.31 2.97 1.49 -0.20
Δz/mm -5.59 -5.37 0.01 -8.29 -1.29
Δxy/mm 2.38 1.38 3.33 2.27 0.63
Δxyz/mm 6.07 5.54 3.33 8.59 1.44
Δ𝛼/ ◦ -0.71 -0.38 -0.30 -1.07 -
Δ𝛽/ ◦ -0.84 -1.07 -1.03 -1.14 -
Δ𝛾/ ◦ 0.01 0.02 0.04 0.03 -

Outdoor experiment
Mean DBSCAN Pose err Blur score Total station

Δx/mm 4.42 1.87 3.24 7.22 1.15
Δy/mm -4.27 -4.20 -2.60 -11.72 1.00
Δz/mm 19.83 11.84 16.74 22.11 -1.29
Δxy/mm 6.15 4.60 4.15 13.77 1.52
Δxyz/mm 20.76 12.70 17.25 26.04 2.00
Δ𝛼/ ◦ 0.73 1.65 0.07 1.43 -
Δ𝛽/ ◦ 1.08 0.49 0.82 2.96 -
Δ𝛾/ ◦ 0.10 -0.06 0.10 0.20 -

Neural network correction
Indoor coorection Outdoor correction
Mean DBSCAN Mean DBSCAN

Δx/mm 0.76 -0.42 4.00 -0.25
Δy/mm -3.08 -2.37 -7.33 -8.22
Δz/mm 2.56 1.94 5.50 4.44
Δxy/mm 3.17 2.41 8.35 8.22
Δxyz/mm 4.08 3.09 10.00 9.35
Δ𝛼/ ◦ 0.37 0.48 1.52 -0.29
Δ𝛽/ ◦ -2.85 -2.35 -5.24 -1.93
Δ𝛾/ ◦ 3.73 3.05 5.38 2.96

4.2 Real-world testing

Building a large-scale testing environment is not only
challenging, but it is also impractical to test the entire
building’s exteriors with exact ground truth. To mitigate
this, we used a 2000 x 2000 millimeters calibrated wooden
board as a substitution for placing our AprilTags. Each tag
is 15 cm in length and is augmented with four reflective
tapes at its corners, for measurements with a total station.
The AprilTags were accurately placed with rulers.

Regarding the total station measurements, we used the
Leica TC702. For better accuracy of the total station
results, each layout was measured from 2 to 3 different
positions in two phases.

The indoor experiments were carried out in a lab with
shooting distances ranging from 4 to 15 meters. Figure
4b shows an example of the indoor picture.

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

1297



The second part of Table 1 shows the accuracy of a rep-
resentative indoor example layout. Bold numbers are the
best results among 4 postprocessing methods.DBSCAN
still performs the best in general, but pose err also shows
good results. Our proposed pipeline reaches the total-
station-level accuracy.

The outdoor experiments are carried out on the cam-
pus with shooting distances ranging from 5 to 18 meters.
The third part of Table 1 shows the accuracy of a represen-
tative outdoor example layout. One major reason that de-
creased the accuracy could be the poor illumination of the
experiment environment. Among all the postprocessing
methods, DBSCAN also achieved the best performance.

The neural network was tested on the test dataset
and performed quite well with a mean absolute loss of
3.5547mm and an accuracy of 0.7551. The last part of
the Table 1 shows a sample correction result. We can see
there’s an improvement in the depth measurement.

Further, we tracked the consumed time for our pipeline
in the experiments. Table 2 shows that our method is much
more efficient than the total station while achieving similar
accuracy.

Table 2. Spent time comparison
AprilTag detection total station

setting up/min 3 13
measuring/min 15 28

5 Conclusion
The research described in this paper has successfully

demonstrated a collection of techniques that allow for an
accurate and faster process of building measurements, es-
pecially compared to conventional methods. Future re-
search will include:

1. Improving the machine learning algorithm. We are
currently exploring the possibility of using 3D ren-
dering software to generate synthetic images through
which we can generate more datasets.

2. Integrate and test the proposed pipeline with UAVs.
We will work closely with another team on this
project that is currently developing a UAV for sticking
the AprilTags.

In the next steps of the research, the idea is to use this
technique in real buildings.
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