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Abstract –  

Indoor comfort is shaped by many factors, such as 

thermal comfort, air quality, and lighting. Traditional 

building-management systems often struggle to bring 

all these elements together and make real-time 

adjustments. To tackle this challenge, this study 

develops a digital-twin platform that combines 

indoor-comfort assessment with intelligent 

environmental control to realize real-time monitoring, 

accurate analysis, and efficient management of 

various environmental parameters. The system is 

based on building information modeling (BIM) and 

incorporates real-time sensors and camera data, 

which are processed to assess and adjust core comfort 

factors. These include thermal indices (predicted 

mean vote and predicted percentage of dissatisfied), 

air-quality metrics (CO2 levels), and lighting 

conditions like illuminance and color temperature. 

The platform utilizes Unity for environmental 

simulation and visualization, integrating smart 

lighting and air-quality sensors to deliver real-time 

feedback and control. To demonstrate its application, 

the study focuses on three common scenarios in 

educational settings: classroom mode, relaxation 

mode, and presentation mode. The system can 

automatically fine-tune environmental settings to 

meet specific user needs and enhance comfort. The 

results show that the system successfully bridges 

monitoring and control across thermal comfort, air 

quality, and lighting, offering a practical and efficient 

solution for smart-building management. 

 

Keywords – 

Digital Twin; Building Information Modeling; 

Thermal Comfort; Indoor Air Quality; Visual 

Comfort. 

1 Introduction 

With the rise of modern smart-building technologies, 

there has been growing attention on creating human-

centric indoor environments that prioritize comfort. This 

includes addressing key aspects like thermal comfort, air 

quality, and lighting. However, traditional building-

management systems often fall short when it comes to 

real-time monitoring and control of these factors. 

Research shows that integrating digital-twin (DT) 

technology with smart devices can effectively address the 

limitations of traditional management systems. For 

example, Tan et al. [1] developed a digital-twin Lighting 

(DTL) system that merges building information 

modeling (BIM) and computer-vision technology, 

enabling efficient energy use alongside real-time 

environmental control. Their testing demonstrated an 

impressive 95.15% decision-making accuracy and 

energy-cost savings of around 79%. Similarly, Leplat et 

al. [2] applied DT models for multivariate simulations, 

achieving a balance between visual needs, ecological 

concerns, and lighting design, further showcasing the 

versatility of DT technology. 

To overcome these limitations, this study proposes an 

integrated system based on DT technology for assessing 

indoor comfort and enabling intelligent environmental 

control. By integrating BIM, Internet of Things (IoT) 

architecture, and smart devices, the system enables 

dynamic management and optimization of multiple 

environmental parameters, ultimately enhancing overall 

comfort and user experience. 

The essence of DT technology lies in seamlessly 

connecting physical objects, virtual models, and data to 

simulate and enhance the operational efficiency of 

physical systems [3]. While BIM has been extensively 

used during the design and operational phases of 

buildings, it struggles with integrating dynamic data and 

enabling adaptive control, particularly when 

coordinating multiple systems like HVAC, lighting, and 

fire safety. Additionally, challenges persist in real-time 

data processing and achieving standardization [4]. As 

modern buildings place greater emphasis on health and 

efficiency, the need for dynamic management of thermal 

comfort, air quality, and lighting has become 

increasingly important in smart building design. For 

example, maintaining optimal temperature and air 
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circulation can significantly boost physical well-being, 

while lighting tailored to user needs can improve mental 

health, reduce stress, and enhance productivity in both 

learning and work environments [5]. 

International standards play a crucial role in 

enhancing indoor environmental quality. The EN 12464-

1 standard offers detailed guidelines for lighting across 

various spaces, focusing on achieving a balanced 

approach to health, psychological comfort, and visual 

needs [6]. Appropriate adjustment of environmental 

parameters is essential for ensuring comfort in different 

scenarios, as ideal color temperature and illuminance 

levels can vary greatly between relaxation and work 

settings [7]. 

Building on this foundation, this study incorporates 

smart-lighting and environmental-sensing technologies 

to create a DT-based system designed for the dynamic 

assessment and control of thermal comfort, indoor air 

quality, and lighting comfort. The system simulates three 

common scenarios: classroom mode, relaxation mode, 

and presentation mode, all aligned with the EN 12464-1 

standard. Through experimental evaluations, it assesses 

the system's effectiveness in enhancing comfort and 

promoting health. This research offers a practical 

solution for managing indoor environments in smart 

buildings and serves as a reference for future human-

centered architectural design. 

2 System Framework 

The system framework is shown in Figure 1. This 

study adopts the EN 12464-1 lighting standard to design 

three typical scenario modes: classroom mode, relaxation 

mode, and presentation mode. Lighting parameters were 

customized to align with the specific requirements of 

each scenario. The system integrates BIM with a DT 

platform to enable comfort simulation and environmental 

control. For data processing, IoT sensors gather real-time 

data on temperature, humidity, and carbon-dioxide (CO2) 

concentration, which are further complemented by image 

recognition technology for detailed analysis. All data are 

stored in a PostgreSQL database, supporting data 

visualization, dynamic updates to environmental models, 

and intelligent decision-making capabilities. The DT 

platform dynamically evaluates thermal comfort, indoor 

air quality, and lighting comfort, focusing on predicted 

mean vote (PMV), predicted percentage of dissatisfied 

(PPD) analysis, CO2 concentration heatmaps, and 

intelligent lighting control. PMV and PPD are important 

indicators in the ISO 7730 and ASHRAE 55 standards 

for assessing indoor thermal comfort. PMV represents 

the average thermal sensation of individuals in a given 

environment, while PPD estimates the percentage of 

people likely to experience discomfort. To maintain a 

comfortable indoor climate, PMV values are generally 

recommended to stay between −0.5 and 0.5.  

 
Figure 1. System framework for this research. 

2.1 Conventional vs. Proposed Data Acquisition 

Traditional DT platforms primarily rely on sensor 

data and manually entered information to construct 

digital models. However, this approach can lead to delays 

in data updates and human errors, making it difficult to 

reflect real-time changes in the indoor environment. 

The proposed method improves automation and data 

timeliness by using sensors to continuously transmit 

environmental data, such as temperature, humidity, and 

CO2 concentration. Additionally, it integrates image-

recognition technology to automatically estimate the 

number of occupants and their clothing insulation levels. 

These values are then used to calculate thermal comfort 

indicators like the PMV index. This reduces manual input 

errors and allows for real-time adjustments to 

environmental control strategies, making the DT model 

more responsive to actual conditions. A comparison of 

42nd International Symposium on Automation and Robotics in Construction (ISARC 2025)

1317



these two approaches is presented in Figure 2. 

 

 

Figure 2. Comparison of two data-acquisition 

methods. 

2.2 Data Processing and Integration Workflow 

First, this study uses Revit 2023 to create a BIM 

model that accurately reflects the characteristics of the 

experimental environment. To preserve material 

appearance during the modeling workflow, 3ds Max was 

used for material conversion. Autodesk-native materials 

were transformed into Physical Materials to avoid 

material loss during export. Following this step, the 

model was exported in FBX format for seamless 

integration into the Unity platform, supporting the 

development of the DT. 

The system integrates mass data from diverse data 

sources, including temperature and humidity sensors, 

CO2 sensors, image recognition tools, and smart lighting 

systems. Real-time environmental data are obtained from 

temperature and humidity sensors, while image 

recognition is applied to detect room occupancy and 

evaluate clothing insulation levels (Icl), which are then 

used to calculate PMV and PPD values. Indoor air quality 

is assessed by monitoring and calculating CO2 

concentrations using dedicated sensors. Moreover, the 

smart-lighting system manages dynamic lighting control 

based on predefined comfort parameters. This integrated 

dataset is processed to generate visual outputs, such as 

PMV and PPD heatmaps, CO2 concentration heatmaps, 

and lighting simulation scenarios. These visualization 

results can help users better understand environmental 

conditions and make informed decisions about 

adjustments. 

The system utilizes continuous data streaming and 

real-time feedback mechanisms to dynamically adjust 

indoor environmental parameters, addressing the need 

for real-time monitoring and enhancing comfort in smart 

buildings. The following sections will provide a detailed 

overview of the analysis and implementation methods for 

thermal comfort, indoor air quality, and visual comfort. 

2.3 Thermal Comfort Analysis 

This study provides a detailed analysis of indoor 

thermal comfort primarily by using the PMV and PPD 

indices to assess comfort under various environmental 

conditions. The PMV index, introduced by Danish 

engineer Fanger [8], measures human thermal comfort in 

a specific setting. It takes into account several 

environmental factors, such as air temperature, radiant 

temperature, air velocity, and relative humidity, as well 

as personal factors like clothing insulation and metabolic 

rate. The calculation formula is as follows: 

PMV = (0.303e−0.0036M+ 0.028) × { M –3.05 ×  10– 3 
× (5733 – 6.99M– pa ) – 0.42 × (M– 58.15) – 1.7 
×  10−5 × M ×(5867 – pa) – 0.0014×M× (34 – ta) – 
3.96 × 10−8  fcl ×[(tcl  + 273)4  – (tr + 273)4] – fcl  × 
hc × (tcl– ta) }                                                                                            (1) 

The parameters used in the formula are summarized 

in Table 1, while the PMV index categorizes thermal 

sensations into seven levels, as shown in Figure 3. 

For PMV calculation, the following data are obtained 

from IoT sensors: 

⚫ Air temperature (ta): Measured using the 

AM2320 temperature and humidity sensor. 

⚫ Water vapor pressure (Pa): Calculated based on 

the relative humidity measured by the AM2320 

sensor, using the equation (see Equation (2)), 

where RH represents the relative humidity. 

Pa = RH × 10 × e(16.6536−
4030.183

ta+235
)                        (2) 

Other parameters are computed programmatically as 

follows: 

⚫ Metabolic rate (M): Assigned based on the type 

of activity, e.g., 

1. Resting (sitting): 60 W/m² 

2. Light walking (office walking):100 W/m² 

⚫ Mechanical work (W): Assumed to be 0, as 

typical classroom environments do not involve 

significant physical exertion. 

⚫ Clothing surface temperature (tcl): Determined 

iteratively based on the mean radiant 

temperature (tr) and air temperature (ta): 

 

tcl= 35.7 − 0.028𝑀 − 𝐼𝑐𝑙 × [3.96 × 10−8 × 𝑓𝑐𝑙 ×
(𝑡𝑐𝑙 + 273)4 − (𝑡𝑟 + 273)4 + 𝑓𝑐𝑙 × ℎ𝑐  × (𝑡𝑐𝑙 −
𝑡𝑎)]; 
                                                                                                 (3) 

 

⚫ Clothing surface area factor (fcl): 

 

fcl = {
1 + 1.29Icl, if Icl ≤ 0.78

m2k

w

1.05 + 0.645Icl, otherwise
; and               (4) 

 

⚫ Convective heat transfer coefficient (hc): 
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hc = {

2.38 × |tcl − ta|0.25

 if 2.38 × |tcl − ta|0.25 ≥ 12.1 × Var0.5

12.1 × Var0.5, otherwise

. 

(5) 

 

Finally, all parameters are applied to the PMV 

equation for calculation. The resulting PMV values are 

visualized using a heatmap, providing an intuitive 

representation of indoor thermal comfort distribution. 

In this study, the metabolic rate (M) is a key 

parameter for PMV calculation and is determined based 

on the activity-type table from ISO 7730 and ASHRAE 

55 standards, as shown in Table 2. The metabolic rates 

are set as follows for different scenarios: 1.0 MET for 

classroom and relaxation scenarios and 1.7 MET for 

presentation scenarios, ensuring accurate PMV 

calculations. The PPD index is derived from PMV, which 

indicates the percentage of people likely to feel 

dissatisfied: 

PPD = 100 – 95 × exp (-0.3353 PMV4 – 0.2179 PMV2) 
(6) 

When the PMV value is close to zero, the PPD value 

reaches its minimum, suggesting that most individuals 

are thermally comfortable. Conversely, as the absolute 

value of PMV increases, the PPD value approaches 100, 

reflecting a greater dissatisfaction. 

To enhance the dynamics and accuracy of the PMV 

index, this study integrates YOLOv8 for real-time human 

detection, recording the number of individuals entering 

and leaving the space. YOLOv8 is a high-performance 

object detection framework capable of rapidly 

identifying and tracking the number and movement of 

individuals in an environment [10]. These occupancy 

datasets are used as input parameters for the PMV 

calculation, enabling real-time comfort evaluation. 

Additionally, this study employs the UNet (ResNet50) 

deep-learning model to identify clothing types, such as 

long sleeves and short sleeves, for calculating clothing 

insulation levels, thus providing critical data for accurate 

PMV assessment. The recognition results from UNet are 

shown in Figure 4. 

Table 1. The meanings of the parameters in the PMV 

formula. 

Parameter Description 

M Metabolic rate (heat generated by the 

human body) 

W External work (amount of work 

performed by the body) 

𝑡𝑎 Air temperature (temperature of the 

ambient air) 

𝑡𝑐𝑙 Clothing surface temperature 

(temperature felt on clothing surface) 

𝑡𝑟 Radiant temperature (mean temperature 

of surrounding surfaces) 

𝑓𝑐𝑙 Clothing thermal resistance (resistance 

of clothing to heat conduction) 

ℎ𝑐 Convective heat transfer coefficient 

(efficiency of heat transfer between air 

and skin) 

𝑝𝑎 Water vapor pressure (pressure of water 

vapor in the air) 

𝐼𝑐𝑙  Clothing thermal resistance (clothing's 

resistance to heat) 

 

 

Figure 3. Definitions of PMV values according to 

ASHRAE [9]. 

 

Table 2. Activities corresponding to human metabolic 

rates. 

Activity Type M 

(W/m²) 

M 

(MET) 

Rest – Lying  40 0.7 

Rest – Sitting  60 1.0 

Rest – Standing  70 1.2 

Office – Writing/Reading 60 1.0 

Office – Typing 65 1.1 

Office – Walking 100 1.7 

Office – Organizing Items 120 2.1 

 
Figure 4. Recognition results for clothing insulation 

level. 

2.4 Air Quality Analysis 

This study analyzes indoor air quality by focusing on 
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the distribution and dynamic changes of CO2 

concentrations, which are visualized using heatmaps. 

This visualization provides an intuitive illustration of 

spatial CO2 levels across indoor areas, along with real-

time concentration trends, thereby providing essential 

data for assessing and regulating indoor air quality. To 

further quantify the air exchange demand, the model 

proposed by Coley and Beisteiner [11] is used to 

calculate the indoor–outdoor CO2 exchange rate. The 

calculation formula is: 

𝐂𝐭  =  𝐂𝐞𝐱  +  
𝐆

𝐐
 +  (𝐂𝐢𝐧 −  𝐂𝐞𝐱 − 

𝐆

𝐐
)  ×  𝐞−(

𝐐

𝐕
)𝐭

. (7) 

In this formula, the parameters represent the 

following: Ct is the indoor CO2 concentration at time t 

(ppm), Cex is the outdoor CO2 concentration (ppm), Cin  

is the initial indoor CO2 concentration (ppm), G is the 

indoor CO2 generation rate (ppm/h), Q is the ventilation 

rate (m³/h), and V is the indoor space volume (m³). 

To accurately compute air exchange values, the 

following data are obtained from IoT sensors: 

⚫ Outdoor CO2 concentration (Cex): Measured 

using the DS-CO2-20 sensor, representing the 

CO2 level in the outdoor environment (ppm); 

and 

⚫ Initial indoor CO2 concentration (Cin): 

Measured using the DS-CO2-20 sensor, 

representing the initial CO2 concentration 

inside the space (ppm). 

Other parameters are derived from computational 

models as follows: 

⚫ CO2 generation rate (G): Determined based on the 

number of occupants in the space. Each person 

produces a certain amount of CO2 per second. In 

this study, the average human CO2 emission rate is 

assumed to be 40 mL/min. 

⚫ Ventilation rate (Q): The ventilation volume per 

cycle is set at 50 m³. Accordingly, the ventilation 

rate is determined using: 

 

Q =
50

60×60
 (m3/s) .                                                                    (8) 

 

⚫ Indoor space volume (V): The experimental space 

has a volume of 118.62 m3. 

⚫ Indoor CO2 concentration over time (Ct): The CO2 

level at time t is determined based on ventilation 

and generation rates: 

 

Ct = Q × T (ppm).                                                               (9) 

 

This study integrates sensor data with computational 

modeling to accurately capture dynamic CO2 

concentration changes within indoor environments, 

enhancing real-time monitoring and decision-making, as 

illustrated in Figure 5. 

Furthermore, this study combines heatmap 

visualization with mathematical modeling to develop a 

dynamic air-exchange recommendation system. CO2 

heatmaps provide a spatial representation of indoor CO2 

distribution, enabling the system to identify high-

concentration areas for targeted air-quality regulation. 

The air-exchange formula is then applied to predict 

concentration changes and determine the necessary 

ventilation rate. For example, in scenarios where CO2 

levels exceed the threshold, the system may recommend 

an exchange rate of 50 m3/hr. 

 

 

Figure 5. CO2 heatmap. 

2.5 Visual Comfort and Intelligent Control 

This section focuses on visual comfort and intelligent 

smart control, combining international lighting standards 

with advanced technologies to optimize lighting design 

and enable dynamic management for various scenarios in 

educational spaces. 

First, lighting parameters for each scenario are 

defined based on the EN 12464-1 standard. The system 

then adjusts the lighting according to the activity type, 

aiming to strike a balance between comfort and energy 

efficiency. To assess the performance of smart luminaires 

under different conditions, an illuminance meter was 

used to measure brightness in specific zones. These 

measurements help map the relationship between actual 

brightness and illuminance, facilitating in-depth analysis 

of the lighting environment. 

For intelligent control, the system integrates Yeelight 

smart luminaires with the Unity development platform. 

By enabling LAN control, the system establishes 

communication with the luminaires and uses TCP 

protocols to send commands for remote operation. To 

make it user-friendly, an intuitive interface was 

developed, allowing users to easily adjust brightness and 

color temperature with sliders and buttons. This setup 

supports the simulation of multiple lighting scenarios, 

showcasing the design's practicality and flexibility. 
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2.5.1 Scenario Parameter Definition 

To balance lighting comfort and energy efficiency, 

this study establishes indoor lighting parameters for 

educational spaces in accordance with the EN 12464-1 

standard. Key parameters like illuminance and color 

temperature are tailored for each scenario and adjusted 

based on user requirements. 

As shown in Table 3 and referencing the EN 12464-1 

standard's color temperature classification, neutral tones 

were selected for scenarios requiring focused attention, 

while warm tones were used in relaxation modes to 

promote users' psychological comfort. The standard also 

offers specific lighting recommendations for educational 

spaces, as summarized in Table 4. This study uses the 

abovementioned tables as a reference. Lighting 

parameters were tailored to meet the needs of each 

scenario, with detailed configurations presented in Table 

5. 

Table 3. Classifications of lighting color [4] 

Color Appearance Correlated Color 

Temperature (TCP) K 

Warm Below 3300 K 

Intermediate 3300 to 5300 K 

Cool Above 5300 K 

Table 4. Lighting requirements for educational 

buildings [4]. 

Type of Room, 

Task, or Activity 

Maintained 

Illuminance 

(lx) 

Remarks 

Classrooms, 

tutorial rooms 

300 Lighting should 

be controllable. 

Lecture hall 500 Lighting should 

be controllable. 

Student common 

rooms and 

assembly halls 

200  

Table 5. Recommended lighting parameters for different 

scenarios based on EN 12464-1 standards. 

Scene Illuminance 

Range (lx) 

Color Temperature 

Range (K) 

Class Mode 300–500 lx 3300–5300 K 

Relaxation 

Mode 

100–300 lx Below 3300 K 

Presentation 

Mode 

300–500 lx 3300–5300 K 

2.5.2 Smart Luminaire Control System 

To enable real-time adjustments, this study developed 

a user interface (UI) on the Unity platform, offering users 

with an intuitive way to control the luminaires. Through 

sliders and buttons on the interface, users can instantly 

adjust the brightness and color temperature, simulating 

different lighting scenarios based on contextual needs. To 

further enhance automation and adaptability, this study 

integrates a real-time occupancy-based lighting mode 

switching mechanism. Using YOLOv8 for human 

detection, the system monitors the number of people 

entering and exiting the space and dynamically adjusts 

the lighting mode according to predefined thresholds: 

⚫ Activation Threshold: When eight or more 

individuals enter the room, the system 

automatically switches to Classroom Mode or 

Presentation Mode, ensuring appropriate 

illumination for learning or presentation 

activities. 

⚫ Delay Mechanism: A one-minute delay is 

applied before switching modes to confirm 

stable occupancy and to prevent frequent 

unintended fluctuations. 

⚫ Deactivation Threshold: If the number of 

occupants drops to three or fewer, the system 

transitions to Relaxation Mode, minimizing 

unnecessary energy consumption when the 

room is sparsely occupied. 

This system integrates automated mode-switching 

with manual control via the Unity-based UI, enhancing 

user experience while ensuring optimal lighting 

conditions and energy efficiency. 

To enable remote operation, the "LAN Control" 

feature is activated in the Yeelight application, allowing 

luminaires to receive commands over the local network. 

The system then sends a UDP broadcast request to detect 

available luminaires, retrieving their IP addresses and 

ports to establish a stable connection. Once connected, 

TCP communication is used to transmit JSON-formatted 

commands, enabling functions such as turning the 

luminaires on/off, adjusting brightness, and modifying 

color temperature. 

3 Case Study 

This study selected the BIM Research Center of the 

Department of Civil Engineering at the National 

Kaohsiung University of Science and Technology as the 

experimental site, covering an area of approximately 

45.62 m2. To simulate the indoor lighting environment,  

the space was divided into four primary zones, with one 

light fixture positioned at the center of each zone, as 

shown in Figure 6. In line with the space's lighting 

requirements, this study used four Yeelight Moonshadow 
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550 ceiling lights, evenly distributed to meet demands of 

visual comfort. This configuration significantly improves 

light uniformity, reduces glare, and enhances overall 

visual comfort. 

To demonstrate the application of the DT platform, 

this section uses "Relaxation Mode" as an example to 

assess indoor comfort through system operation and 

analysis. The platform integrates real-time 

environmental monitoring and visualization technologies, 

enabling a comprehensive evaluation of thermal comfort, 

air quality, and visual comfort. 

For air-quality analysis, the system uses CO2 

heatmaps to display real-time comfort levels across 

different zones, based on continuous data from four CO2 

sensors. Additionally, the system offers real-time 

recommendations for the necessary air-exchange rate 

based on the monitoring results, allowing users to adjust 

air quality effectively. 

For thermal comfort, the system utilizes the 

PMV/PPD index to monitor real-time environmental data 

and employs heatmap visualization to display the 

distribution of thermal comfort, as shown in Figure 7. 

Experimental results show that overall thermal comfort 

within the space stays within standard ranges, thereby 

satisfying the needs of human comfort. 

In terms of visual comfort, under "Relaxation Mode", 

the lighting is set to a warm, low-light mode with a color 

temperature below 3300 K. This design effectively 

reduces the light intensity and creates a relaxed and 

comfortable atmosphere. The UI of the DT platform 

displays key parameters such as lighting intensity, color 

temperature, and thermal comfort metrics, as shown in 

Figure 8. Experimental results reveal that the virtual 

images generated by the DT platform align closely with 

the real-world environment, further validating the 

accuracy and reliability of the system's data, as shown in 

Figure 9. 

To ensure data accuracy, this study used an 

illuminance meter to measure the brightness of smart 

lights and their corresponding illuminance levels in 

different scenarios. Measurements were taken at the 

center of the space, as shown in Figure 10. 

During the testing, the brightness of the smart lights 

was gradually adjusted from 10% to 100%, with readings 

taken every 10%. The recorded illuminance values were 

then compiled into a reference table, as shown in Table 6, 

which displays the illuminance distribution in the space 

under different brightness settings. This approach 

ensures systematic and precise data collection, providing 

a robust foundation for lighting comfort analysis and 

validation of the smart-lighting control system. 

 

Figure 6. Spatial lighting configuration diagram. 

 

Figure 7. PMV heatmap 

 

Figure 8. Parameter setting in relaxation mode. 

 

Figure 9. Comparison of virtual and physical 

scenes. 
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Figure 10. Sampling diagram for illuminance 

measurements. 

Table 6 Measured illuminance values corresponding to 

lamp brightness levels. 

Lamp Brightness (%) Average Illuminance (lx) 

10% 178 lx 

20% 235 lx 

30% 294 lx 

40% 347 lx 

50% 397 lx 

60% 459 lx 

70% 511 lx 

80% 564 lx 

90% 609 lx 

100% 652 lx 

4 Conclusions and Future Work 

This study used three typical scenarios—classroom 

mode, relaxation mode, and presentation mode—as case 

studies to validate the application value and reliability of 

the digital-twin (DT) platform in assessing indoor 

comfort conditions. The results demonstrated that the DT 

platform effectively provides an intelligent and 

visualized solution for indoor comfort management. It 

achieves this through real-time environmental parameter 

monitoring, thermal comfort analysis from predicted 

mean vote and predicted percentage of dissatisfied, visual 

comfort assessment, and continuous CO2 concentration 

tracking. These capabilities collectively improve the 

quality of indoor environments and accommodate the 

diverse needs of users across different scenarios. 

Future research could broaden the application scope 

of the DT platform by integrating additional 

environmental parameters, such as acoustic 

characteristics and indoor movement patterns. This 

would enable a more comprehensive assessment and 

control of comfort. Moreover, with advancements in 

artificial intelligence and Internet of Things technologies, 

the incorporation of deep-learning models for user-

behavior prediction and adaptive environmental control 

will be crucial for enhancing the platform's application 

value. These future developments will enable more 

accurate and efficient solutions for smart-building 

management and will contribute to the design of 

sustainable spaces. 
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