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Abstract  

This paper introduces a newly developed 

framework for the automated generation of 

inspection reports in construction. The method 

utilizes earlier published developments by the 

authors on object recognition and localization. 

Inspection reports in this paper are documents 

that monitor and record the progress of installed 

project components and their targeted locations. 

Components in this research are also referred to 

as objects, which include installed piping systems, 

tanks, and mechanical equipment. The reports 

identify the deviations of the installed components 

by comparing their as-built status to the as-

planned ones. The framework integrates the data 

acquired by a Real-Time Location System (RTLS) 

and a computer vision-based LiDar technology to 

generate the reports using object identification 

and localization. While considerable work has 

been reported using such technologies, the 

contribution of the framework presented here lies 

in the efficient integration of these technologies to 

acquire as-built 3D coordinates of the installed 

components. The framework has been validated 

through laboratory experiments, demonstrating 

an accuracy of approximately 27 centimetres for 

the installations’ coordinates in the inspection 

reports. The framework presented here can be 

used for project commissioning to ascertain the 

precise locations of the project’s installations.  
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1 Introduction 

Tracking a project's progress and the quality of 

the activities' execution are critical for project 

control. This process provides a large amount of as-

built information related to various activities on site. 

Such reporting, however, is not simple due to the 

challenges associated with real-time data acquisition 

and processing. Onsite object tracking is an 

important part of a progress reporting system that 

necessitates identifying and localizing the installed 

objects. These objects include project components 

such as mechanical equipment and piping systems.  

1.1 Related Works in Literature 

Automated localization and tracking of objects 

have found many applications in the construction 

industry, including but not limited to timely progress 

reporting, inventory planning and management, and 

productivity analysis [1,2]. By digitizing and 

automating the processes involved, many objects 

related to various project activities are localized and 

tracked in a digital environment. It also enables us to 

track a project activity in a desired timespan, 

enhancing onsite project control. There is a wide 

range of Remote Sensing (RS) technologies for 

tracking resources on site. Real-time Location 

Systems (RTLSs) are a group of these technologies 

that provide localization and identification 

information of the tagged objects on site. Examples 

of these technologies include Global Positioning 

System (GPS), Sensor-Aided GPS (SA-GPS), Ultra 

Wide-Band (UWB), Bluetooth Low Energy (BLE), 

and Radio Frequency Identification Device (RFID), 

which have various indoor and outdoor applications 

for object tracking [1]. Several researchers have 

investigated using these technologies for location 

identification of objects to track onsite construction 

operations. Most of their efforts are focused on 

evaluating real-time tracking of workers, equipment, 

and materials in indoor and outdoor environments 

[2,3-12].  

Integrating these technologies also provides more 

capabilities and helps overcome the limitations of 

individual use of each technology [1]. Studies have 

been conducted on the integrated use of RS 

technologies to overcome the limitations of each 
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individual technology and achieve a more reliable 

and economical system in which many objects can 

be tracked and localized. While the reasonable price 

of RFID tags makes them a good choice for indoor 

object tracking, the sole use of RFID tags for indoor 

object localization needs to employ many RFID 

reference tags to enhance localization accuracy [13]. 

For outdoor tracking of objects, an integrated system 

of RFID and GPS-based sensors was developed, 

eliminating the need for reference tags [13-14]. It 

was basically based on finding the location of the 

RFID reader (s) by a GPS receiver and then finding 

the tag's location through the trilateration technique. 

In another example, GPS was integrated with RFID 

to improve positioning and identification capabilities.  

To localize the RFID tags, a boundary condition-

based algorithm was used in which the maximum 

reading range of a hand-held RFID reader helps to 

localize the objects within the radius of the 

trilateration circles [15-16]. In [17], a low-cost 

integrated GPS-barcode system was designed to 

track objects in a storage yard. Furthermore, an 

integrated use of GPS with RFID technologies 

demonstrated a better performance for tracking 

onsite resources [2,13-15,18]. Unfortunately, in an 

indoor environment, the performance of the GPS 

sensors is highly degraded since they need direct 

access to the sky to receive signals from satellites. In 

this case, the UWB system can replace GPS to 

localize the RFID reader within a defined period. For 

indoor applications, an integrated RFID and UWB 

system was developed in [19], providing a low-cost 

and efficient Indoor Positioning System (IPS) using 

passive RFID tags. 

There are various levels of automation in 

generating 3D models out of the point cloud data. In 

a manual approach, the point cloud data are used to 

manually model the objects by visual inspection. 

Also, supplementary tools for 3D modelling (i.e., as-

built modeler) are used to facilitate the modelling of 

objects out of the point cloud data. In another 

approach, AI-based supervised algorithms are 

implemented in which the as-planned 3D model of 

the project corresponds to the acquired point cloud 

data. In these techniques, the supervised classifiers 

or AI techniques are used to relate every project 

object in the generated model to a corresponding 

element in the planned model. The planned model is 

used as a reference to help identify the objects in the 

point cloud data. These techniques are semi-

automated, however, manual inspection of the 

generated models is still inevitable. Furthermore, it 

assumes that the as-planned 3D model is accurate 

enough, while it was shown that it might need to be 

corrected in many cases [20]. The AI-based Deep 

Neural Network (DNN) techniques are also used to 

model the objects out of point cloud data. These 

techniques directly use the point cloud data and are 

trained once for various classes of objects available 

in the tracked scene. After that, the DNN could detect 

or segment the objects accordingly. These 

techniques are categorized as fully automated 

techniques. However, the accuracy of the DNN in 

detecting the objects in the scene needs to be 

improved [20-21]. 

Sensory data achieved by RTLS and 3D imaging 

technologies such as laser scanners and depth 

cameras can be used to enhance the project's Level 

of development (LOD) through a digital twin 

platform. Lean 4.0 and Industry 4.0 are two new 

concepts that can be implemented through a digital 

twin. The RTLS-based digital twin was investigated 

in [21-25] to facilitate the practice of Lean 4.0 for 

object tracking. That study introduced three levels of 

digitalization and communication between the 

physical and digital twins. In level 1, only a 3D 

representation model of the physical object or site is 

available. In level 2, a one-way data flow from the 

physical object (s) to the digital object (s) in the 

model is initialized. In level 3, an integrated and bi-

directional connection between the physical object (s) 

in the field and digital object (s) in the model is fully 

automated [22-23]. Information about the scheduling 

of the activities and the objects assigned to each 

activity can be added to the Building Information 

Modelling (BIM) to enrich the information about the 

onsite objects. For this purpose, various RS 

technologies are used to obtain different types of 

required information. For example, the RTLS 

sensors attached to these objects on site, including 

mechanical equipment and plumbing systems, are 

acquired information about the location of objects. 

Transferring these captured raw data to a BIM-based 

model and updating it in a defined time resolution 

depends on the type of project activities on site. 

Every change in the objects' location and status are 

updated in the BIM model. This information is then 

processed, and the required actions are taken 

accordingly and reflected again on the BIM model. 

The constant communication between the physical 

environment and the digital model of the project 

environment through the sensory data 

communication and the 3D project representation on 

site help to enhance project inspection and progress 

reporting through a digital twin platform. 

1.2 Research Objectives 

This research introduces an innovative 

framework for the automated generation of 

inspection reports, leveraging an integrated use of 
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Real-Time Location System (RTLS), 3D digital 

imaging, and web-enabled computer vision 

technologies. These integrations help to bring more 

visibility into project’s operation by tracking actual 

progress on the job site through efficient use of the 

mentioned technologies. They also reduce the 

manual effort required for data collection and 

generation of inspection reports.  The framework 

will enhance the efficiency of construction project 

delivery by boosting productivity and facilitating 

timely decision-making through an improved 

inspection process.  

2 Developed Framework for 

Generating Inspection Reports 

In this study, a sensory-based framework is 

developed to identify and localize onsite installations 

for generating inspection reports that comprise the 

installations' progress and their targeted coordinates. 

Figure 1 illustrates the framework, including the data 

collection technologies, data processing algorithms, 

and generated inspection reports. The framework 

comprises three methods: (1) an RTLS-based 

tracking method that utilizes a joint application of 

RFID and UWB technologies to improve the 

localization of the tagged objects, (2) a 3D object 

detection and localization point cloud-based method 

that utilizes a computer vision algorithm, PointNet, 

and a ready-to-use platform, Vercator Cloud, and (3) 

a method that integrates the output of the first two 

methods.  

The first method was developed earlier by the 

authors to provide location identification 

information about indoor objects' locations [19]. The 

second method was also developed earlier by the 

authors to detect and localize objects using a 

computer vision algorithm and 3D point cloud data 

[25]. These two types of data are then integrated 

using the third method to improve the 3D 

localization of the RTLS while giving ID to the 

objects detected by the computer vision algorithms. 

This integration is performed by mapping the 

coordinates of the objects realized by these two 

technologies  

Integrated technologies are used in the 

framework to enhance the coordinates' accuracy of 

the identified objects (i.e., chairs), along with 

information about the quantity of the objects. 

Inspection reports are then generated using the 

collected data mapped to the digital environment, 

considering the quantities and locations of the 

objects. The coordinates' deviation illustrates the 

difference between the installations' as-built and as-

planned locations, including the ± localization error 

of the integrated RTLS and 3D imaging technologies. 

The as-planned coordinates are derived from the tie-

points on the ground in the laboratory. 

.

   

Figure 1. Developed framework for data 

collection and integration using RTLS and 

LiDar data.  

2.1 RTLS for Object Identification and 

Localization 

Here, an integrated system of RFID and UWB 

sensors is used. This integration helps to avoid the 

high cost of UWB implementation for object 

tracking while benefiting the medium-range 

capability of the RFID tags [19]. This method aims 

to provide near real-time localization data of indoor 

objects. An integrated use of RFID and UWB sensors 

benefits from the accurate positioning capability of 

UWB sensors for localizing the hand-held RFID 

reader in an indoor environment [19, 28-30]. The 

system can localize the tagged objects using less 

expensive passive RFID tags while transferring the 

collected data through cloud-based data collection 

tools. As illustrated in Figure 1, the RTLS method 

assigns unique IDs to identified objects, thereby 

compensating for the limitations of computer vision 

in distinguishing identical objects. 

The input data for this system are gathered using 

a hand-held RFID reader, which is equipped with an 

UWB tag. The data are collected in the form of 

two .txt files, corresponding to the RFID and UWB 

devices. The RFID file contains the ID and Received 

Signal Strength Index (RSSI) values, while the UWB 

file captures real-time 3D coordinates of the roving 

RFID reader. The system's output includes the 

estimated 3D coordinates of the RFID tags attached 

to various objects. The authors' experimental work 

showed an accuracy of around 1.5 meters for 3D 

localization of the tagged objects, while 90 percent 

of the objects are identified and localized by the 
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integrated RFID-UWB technologies.   

2.2 LiDar-based Computer Vision for 

Object Detection and Localization  

This study uses a point cloud-based algorithm, 

PointNet, to detect and localize objects. An available 

benchmark is used to train and test the model [25, 28]. 

The acquired point cloud data collected in the 

laboratory are fed into the model to validate the 

algorithm. The algorithm used has an acceptable 

classification accuracy. However, the results for 3D 

scene object segmentation and detection, which is 

required for detecting the target objects in the scene, 

are unsatisfactory. Only four out of ten target objects 

are correctly identified by the network. However, the 

localization accuracy of the detected objects 

increased to a few centimeters. This problem was 

reported in [26] and is compensated by integrating 

the RFID technology in this study. Also, for 

comparison purposes, object segmentation and 

detection have been done by a ready-to-use platform 

in the market, Vercator Cloud, to improve the 3D 

scene object segmentation and detection [27]. 

As illustrated in Figure 1, the detected point 

cloud data obtained through the computer vision 

algorithm compensates for the low accuracy of the 

3D coordinates provided by the RTLS. This 

enhancement improves the 3D localization of the 

tagged objects, which is essential for accurately 

measuring the location of installed components. 

2.3 Integrated RTLS and LiDar Data for 

3D Object Identification and 

Localization 

Integrating RTLS data with point cloud data 

enhances the localization and identification of the 

objects by benefiting the capabilities of these two 

types of data [20]. Assigning IDs to identical objects 

through RTLS ensures accurate identification, which 

is not possible with computer vision algorithms due 

to their limitations in differentiating identical objects 

from the same class. Additionally, RTLS is useful in 

Non-Line-of-Sight (NLoS) scenarios where the 

LiDAR device cannot collect point cloud data (i.e., 

in the covered area or invisible objects behind a 

panel). However, point cloud-based computer vision 

algorithms provide more accurate localization 

information with centimetre-level accuracy, which is 

crucial for many use cases on job sites, such as for 

automated inspection of the Mechanical, Electrical, 

and Plumbing (MEP) installations. 

For integration, all objects recognized and 

localized by the RTLS and point cloud data are first 

derived. Then, for any object tagged by the RFID tag, 

the objects detected by the point cloud data in the 

vicinity of the tagged object that belong to the same 

class of object are selected. For example, if an object 

(i.e., chairs in this study) is tagged and identified 

with the RFID tag, the point cloud data detected as a 

chair by the DNN algorithms are assigned to that 

chair. The accurate coordinates of the detected 

objects by point cloud data are then replaced with the 

location information of the RTLS system. Figure 2 

shows the flowchart of the steps for individual use of 

these technologies and their integration for 

generating inspection reports. 

 
Figure 2. Flowchart of the developed method for integrating RTLS and point cloud data. 
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The integration enhances the localization 

accuracy of the RTLS within the coordinates’ 

accuracy of the point cloud data. However, the 

experiment results show that the occurrence rate for 

this improvement is only 30-40 percent of the tagged 

objects when using the PointNet algorithm and 

available datasets as a benchmark [20]. For the other 

60-70 percent of the tagged objects, the identification 

and localization information achieved by the RTLS 

is still used to generate the inspection reports. In this 

study, the computer vision results achieved with 

PointNet are compared with those achieved by the 

Vercator cloud platform. Vector Cloud uses 

optimized computer vision-based algorithms to 

detect objects from point cloud data and for various 

classes of objects. Also, it enables us to export the 

labelled point cloud data for further analysis and 

integration with RTLS data [27]. 

Figure 3 illustrates various scenarios for 

integrating RTLS and point cloud data to detect 

chairs in the laboratory. Integrating the RTLS data 

with computer vision data ensures higher accuracy of 

the objects’ 3D coordinates while assigning IDs to 

the detected objects to generate inspection reports. 

 
 

  

𝑅𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑: In Range of the RTLS Localization Error 
Score: The score of DNN for a specific Class of Object 

Figure 3. Various scenarios in integrating 

RTLS and point cloud data. 

3 Validation of the Developed 

Framework 

The developed framework is validated through 

an experimental study conducted in a laboratory 

environment, in which identical chairs are used as the 

sample class of objects to be identified and localized 

through the developed framework. The chairs are 

labelled with passive RFID tags on their top back at 

a height of one meter and put on the targeted tie 

points on the ground (Figures 4 and 5). The 

laboratory is also scanned with a LiDar device to 

calibrate the RTLS system and collect point cloud 

data required for the DNN algorithms. Table 1 shows 

the as-planned coordinates of the chairs on the 

designated tie-points on the ground, along with 

information about the assigned RFID ID to each 

chair. Ten tie-points are selected from a total of 65, 

where each chair is located on the tie-points.  

The tagged chairs are identified and localized by 

the RTLS technologies, RFID-UWB. At the same 

time, the chairs are detected and localized by the 

computer vision algorithms. The integrated method 

is then used to exchange information to generate 

inspection reports and identify coordinates’ 

deviation. Table 2 illustrates the estimated 

coordinates of the chairs as determined by the 

integrated method used in this study in two scenarios: 

(1) using the PointNet algorithm and (2) using the 

Vercator cloud platform to refine RTLS coordinates. 

The coordinates deviation is calculated using the 

Root-Mean-Square-Error (RMSE) between the as-

built coordinates and the as-planned coordinates of 

the chair in each tie-point. In a real scenario on the 

job site, this value is a sum of the deviations from the 

as-planned coordinates and the integrated method’s 

error in estimating the chairs’ coordinates. However, 

in this experiment, all chairs are precisely located on 

the as-planned coordinates to identify the integrated 

method error in estimating the as-built coordinates, 

as provided in the last column of Table 2. This error 

could result by various factors that affect the 

performance of the technologies used on the 

laboratory or job site environments. For instance, the 

presence of the metal objects, occlusions and 

obstacles decrease the localization accuracy of the 

integrated method. Additionally, the process of 

mapping RFID-based data to point cloud data 

reduces the precision of the coordinates detected and 

localized by the computer vision algorithm. 

Nevertheless, this integration is essential to improve 

the detection rate of the integrated method. 

To calculate the progress of the chair installations, 

the number of identified chairs is divided by the total 

number of planned tie points. In this study, only one 

chair was not identified and localized by the 

integrated method. Since all chairs are available at 

the targeted tie-points, the estimated progress should 

be 100 percent. However, due to the integrated 

method error in object identification, this value has a 

10 percent error from the actual progress.  
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Figure 4. Layout of the tie-points in the lab. 

 

Figure 5. Registered point cloud data of the 

laboratory. 

Table 1. Chairs’ targeted coordinates in the tie-

points (as-planned status). 

No. 
Tie-

point 
ID 𝑋𝑝(m) 𝑌𝑝(m) 𝑍𝑝(m) 

1 10 A001 4.8 1.2 1 

2 12 A002 3 1.2 1 

3 23 A003 5.7 3 1 

4 27 A004 2.1 3 1 

5 38 A005 6.6 6.6 1 

6 42 A005 9.3 5.7 1 

7 45 A007 9.3 3 1 

8 51 A008 12 2.1 1 

9 53 A009 12 3.9 1 

10 55 A010 12 5.7 1 

Table 2. Tagged chairs’ estimated coordinates using 

the integrated method and coordinates’ deviations 

from as-planned status. 

No

. 

Tie-

point 

𝑋𝑒(

m) 

𝑌𝑒(

m) 

𝑍𝑒(

m) 

Coordinates

’ deviation 

(RMSE) 

Using PointNet Algorithm 

1 10 3.5 1.9 1.8 0.97 

2 12* 3.2 1.4 1.5 0.33 

3 23* 5.9 3.3 1.2 0.24 

4 27 3.5 3.2 2.6 1.23 

5 38 6.1 7.4 1.9 0.75 

6 42 8.5 6.9 1.7 0.46 

7 45* 9.1 3.1 1.2 0.17 

8 51 - - - - 

9 53* 11.7 3.6 1.5 0.38 

10 55 13.4 4.8 1.7 1.042 

Average Deviation (m) 0.62 

Detection Rate 40% 

Estimated Progress 90% 

Using Vercator Cloud Platform 

1 10* 4.6 1.1 1.2 0.17 

2 12* 3.1 1.2 0.9 0.08 

3 23* 5.5 3.2 1 0.16 

4 27* 2.2 3.1 1.2 0.14 

5 38* 6.7 6.5 0.8 0.14 

6 42 8.5 6.9 1.7 0.46 

7 45* 9.2 3 1.1 0.14 

8 51 - - - - 

9 53* 11.8 3.9 0.9 0.13 

10 55 13.4 4.8 1.7 1.042 

Average Deviation (m) 0.27 

Detection Rate 70% 

Estimated Progress 90% 

* The refined RTLS locations by integrated method 

using DNN algorithm. 

As illustrated in Table 2, the use of Vercator Cloud 

enhances the detection rate of the chairs from 40 

percents to 70 percents. This is due to optimized 

algorithms used in this platform and with a larger 

dataset than the PointNet algorithm. Also, that 

results in more accurate coordinates for the chairs 

identified through the integrated method. As 

provided in the table, the chairs are localized more 

accurately with an average accuracy of 62 

centimeters to the 27 centimeters by using Vercator 

Cloud platform instead of PointNet algorithm. This 

is close to the required accuracy for approving the 

installed project’s components, which is around 15 

centimeters. However, one of the chairs is still not 

identified through the integrated method, and with 

RTLS tags (chair number eight in Table 2). 

3.1.1 Contributions and limitations 

The framework presented in this study automates 

the generation of inspection reports for construction 

operations during the construction phase. Integrating 

the RTLS data with point cloud data enhances indoor 

object localization by refining the estimated 

coordinates of the installed project components using 

the object segmentation capability of the DNN 

algorithms and accurate coordinates of the point 

cloud data. 

While the developed method automates the 

generation of inspection reports, it also presents 

certain limitations. For experimental purposes, the 

target objects were positioned at the same height and 
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maintained a clear line of sight (LoS). Future studies 

could explore the challenges of tag placement at 

varying elevations and in congested environments, 

which would provide valuable insights for practical 

applications on job sites.  

The application of the computer vision algorithm 

used in this study should be extended to more 

construction components, such as MEPs, which are 

among the most challenging components to track and 

report on the job sites. Available point cloud data 

benchmarks assist in detecting some of these objects 

without the need for manually creating annotated 

datasets. However, object detection accuracy is not 

acceptable for the class of objects with small datasets 

due to the imbalance in the training dataset size for 

these objects compared to others. Future 

investigations are needed to improve object detection 

with computer vision and to automate the integration 

of RTLS and point cloud data. This will result in 

more accuracy in location identification of the 

detected objects required for approving the 

installation of the projects’ components. Also, the 

object detection capability of the DNN algorithms 

could be used to improve the object identification of 

the RTLS. However, identical objects still cannot be 

distinguished by DNN algorithms. Further 

integration with BIM compensates for this limitation. 

4 Summery and Concluding Remarks 

The framework developed in this study supports 

the automated generation of inspection reports. The 

inspection reports include the progress of the 

installed components and their targeted coordinates 

on the construction sites. These reports are used to 

identify deviations from the targeted coordinates of 

the installed project components by comparing their 

as-built locations to their as-planned ones. The 

digital solution technologies employed in the 

framework are utilized for data capturing, analysis, 

and reporting, leveraging the developed integration 

capabilities. These digital solutions include: (1) an 

RTLS based on integrated RFID-UWB for location 

identification of tagged objects in an indoor 

environment, (2) computer vision and deep learning 

models for object detection and localization of the 

installed project components using point cloud data, 

and (3) an integrated method that enables automated 

generation of the inspection reports through refined 

localization and recognition of the components. 

Further integration of the developed method with a 

project's planned data (i.e., planning and scheduling 

data) enhances the method's cohesion in automated 

data acquisition, site inspection, and progress 

reporting. Additionally, the method has the potential 

to be further integrated into various quality aspects 

of a project, including material quality, waste 

management, and the execution quality of 

construction operations. 
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