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Abstract – 

Acoustic comfort, a critical yet often overlooked 

aspect of indoor environmental quality, plays a 

significant role in occupant health and productivity. 

Unlike other comfort dimensions, such as thermal or 

lighting, measuring acoustic comfort remains 

challenging due to its subjective nature and the 

complex interplay of physiological and psychological 

factors. Current approaches to assessing acoustic 

comfort in indoor environments often overlook the 

content of sound, despite its potential to be a decisive 

factor. For instance, the perceived comfort of 

listening to music at high sound levels differs 

significantly from that of hearing construction noise, 

even at lower sound levels. This research proposes a 

novel framework for integrating acoustic comfort 

analysis in the digital twin environment, which 

comprises psycho-acoustic metrics, sound event 

classification, and predictive analytics. The 

implemented system leverages sensor data, a sound 

event classification neural network, and advanced 

visualization methods to enable real-time and 

historical acoustic analysis. Privacy concerns are 

addressed through a privacy-by-design approach, 

ensuring data security by processing audio on the 

edge devices without storing raw sound. A case study 

in an office environment demonstrates the 

framework's effectiveness in monitoring and 

improving acoustic conditions. Microphones 

connected to edge devices classify sound events and 

calculate soundwave parameters such as relative 

sound pressure levels while integrating results into 

the digital twin. 

 

Keywords –Digital Twins; Acoustic comfort; Psycho-

acoustic metrics; Sound event classification; Acoustic 

monitoring; Comfort analysis 

1 Introduction 

There exist numerous definitions for the term 

“comfort” in various domains such as AEC-FM 

(architecture, engineering, construction, and facilities 

management) and healthcare. The common theme in the 

definitions of comfort in the built environment refers to 

it as a state of physical and psychological ease, 

characterized by the absence of discomfort or distress. 

Although this high-level definition understandably 

describes comfort, it fails to adequately pinpoint its 

defining measurable characteristics. The notion of 

comfort in buildings can be viewed in multiple distinct 

but interrelated aspects, such as thermal comfort, 

acoustic comfort, indoor air quality, and lighting comfort; 

each of which depends on various variables. However, 

the level of perceived comfort differs for each person, 

depending on the physiological and psychological state 

at that very moment in time. Maintaining comfort is a 

fundamental need in buildings; the indoor environment 

quality (IEQ) performance of a building, is a decisive 

factor in the health, productivity, and well-being of its 

occupants, and can be a determinant factor in lifecycle 

costs and energy consumption [1]. 

Among the different aspects of comfort, acoustic 

comfort received less attention [2]. A simple search on 

academic databases related to indoor comfort reveals a 

substantial disparity in the number of studies focusing on 

different aspects of comfort, with significantly fewer 

studies focusing on acoustic comfort compared to other 

aspects, such as lighting, thermal, and air quality. 

Acoustic comfort is generally defined as “a state of 

contentment with acoustic conditions” [3], and it can play 

a pivotal role in determining the overall comfort of an 

environment. Furthermore, it is interrelated to other 

aspects of comfort and the building's overall energy 

consumption. For instance, occupants may face the trade-

off between the generated HVAC noise by the cooling 

system and thermal discomfort [4]. 

Similar to other aspects of comfort, measuring 

acoustic comfort is complex. Sound perception is 

subjective and varies among individuals based on their 

experiences, cultural backgrounds, and personal 

preferences [5]. Additionally, it highly depends on the 

psychological state of the occupants, which makes its 

objective assessment more difficult or impossible. 

Although the physical characteristics of sound waves can 

be adequately measured, there is no measurable 

characteristic showing the overall psychological state of 

a human being and how comfortable a person is while 

being exposed to acoustic stimuli. As a result, a certain 
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sound pattern may seem uncomfortable or annoying to a 

person and can be ignored or even considered pleasant by 

another person [6]. 

To estimate the acoustic comfort level of a space, 

traditionally, some of the basic variables of the acoustic 

waveform are measured. Such variables include the 

sound pressure levels (dB), the frequency (Hz), and the 

time that a person is exposed to the sound. Although 

these variables are essential for estimating acoustic 

comfort, and some regulations and guidelines are already 

developed recommending their acceptable ranges, 

“acoustic comfort” is by far more complex to measure. 

For example, the human hearing system does not respond 

to all the frequencies, and the sound pressure levels 

equally [7]; hence, the sounds with some frequencies 

may be perceived as louder than others. This shows the 

inadequacy of assessing acoustic comfort using only the 

sound (acoustic) pressure level. 

Consequently, psycho-acoustic indicators such as 

loudness, A-weighted sound pressure level, sharpness, 

roughness, fluctuation strength, articulation index, and 

impulsiveness were introduced[8, 9]. These psycho-

acoustic indicators consider the human hearing system in 

perceiving sounds, resulting in a better estimation of 

acoustic comfort. For example, to have a better 

understanding of “how loud a sound is”, loudness is 

defined which is the property of the sound that can be 

“ordered on a scale extending from soft to loud” [10]. 

However, even the existing psycho-acoustic 

indicators would not be sufficient to adequately assess 

the acoustic comfort for a specific space. For example, 

although there might be a similarity between calculated 

psycho-acoustic indicators of audio patterns of certain 

musical pieces and construction tools (e.g., jackhammer), 

the perceived sensation for the occupants would be 

completely different. The feeling of acoustic comfort for 

occupants who are exposed to a musical piece heavily 

depends on their musical taste, whereas the noise of the 

construction tool can be unpleasant for all occupants. 

The inadequacy of such metrics and indicators can be 

linked to their exclusive reliance on sound wave 

parameters, without accounting for the content or type of 

the sound. Consequently, researchers have sought to 

develop new psychoacoustic indicators and sound 

perception descriptors, such as satisfaction, 

dissatisfaction, noisiness, and pleasantness, as 

highlighted by Hossain et al. [11]. The recent 

advancement of the Deep-learning-based models allows 

a near real-time analysis and classification of sound 

events. Combining the classic metrics, psycho-acoustic 

indicators, and sound event categorization provides 

better monitoring and estimation of acoustic comfort for 

the built environment. Additionally, such a combinatory 

effect allows for defining customized indications of the 

comfort level considering individual occupants' 

preferences. 

This research aims to provide a framework to perform 

acoustic comfort analysis by combining various metrics 

and indicators together with sound event category 

identification within a digital twin. The proposed 

framework comprises the integration of sensor data 

within a digital twin solution, the calculation of psycho-

acoustic indicators, the near-real-time identification of 

sound event categories, and the predictive analytics 

capability. Additionally, the framework adopts the 

privacy-by-design approach in which the stored data 

cannot be used to recreate the original captured sound. 

The remainder of this paper presents a brief review of 

the literature on acoustic environmental assessment, the 

application of psychoacoustic indicators, and the role of 

Sound Event Detection (SED) in such evaluations. This 

is followed by a detailed explanation of the proposed 

framework and its potential applications. A case study 

implementation is then described, along with the 

corresponding results and conclusions. 

2 Related Work 

Literature on assessing the acoustic suitability of 

environments reveals two interrelated yet distinct 

concepts: soundscape and acoustic comfort. While both 

address the auditory experience, their focus and 

applications differ. Acoustic comfort primarily pertains 

to enclosed spaces, emphasizing the reduction of 

annoyance and enhancement of auditory satisfaction 

within confined environments. In contrast, the concept of 

soundscape is broader, encompassing urban, natural, and 

built environments. It explores the dynamic interaction 

between environmental sounds and human experiences. 

Both soundscape and acoustic comfort assessments 

rely on a combination of objective and subjective 

parameters. For example, Aletta et al. [12] emphasize the 

role of psychoacoustic indicators, such as loudness, 

sharpness, roughness, and fluctuation strength, in 

soundscape studies. Similarly, Engel et al. [13] 

conducted a systematic review of 46 peer-reviewed 

studies, demonstrating the widespread application of 

psychoacoustic indicators in soundscape research. These 

findings highlight the critical role of such indicators in 

capturing human perceptions of acoustic environments, 

thereby enhancing the accuracy and relevance of 

soundscape evaluations. Likewise, psychoacoustic 

indicators are integral to assessing acoustic comfort. For 

instance, the relationship between objective acoustic 

measurements and subjective responses to evaluate 

acoustic comfort in residential settings is investigated in 

[14]. Their study underscores the importance of 

indicators addressing low-frequency noise to better 

correlate technical data with perceived annoyance, 

thereby emphasizing the need to integrate human 
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perception into acoustic comfort assessments. 

A review of the literature reveals the extensive use of 

psychoacoustic indicators in assessing acoustic 

environments. Zhang et al. [6] developed a high-

precision model for predicting acoustic comfort in 

electric buses by integrating psychoacoustic indicators 

with machine learning techniques. Similarly, Herranz-

Pascual [15] introduced the Acoustic Comfort 

Assessment Scale (ACAS-12), a psychometrically 

validated tool designed to assess acoustic comfort in 

urban environments. This scale incorporates indicators, 

such as pleasantness, eventfulness, familiarity, 

informational capacity, and congruence, demonstrating 

its reliability and effectiveness in capturing subjective 

perceptions of acoustic environments. Additionally, 

Kang et al. [16] proposed a framework for creating 

soundscape maps in smart cities. Their model predicts 

perceptual attributes, such as pleasantness and calmness, 

using sound profiling and linear regression analysis, 

offering a valuable tool for enhancing urban soundscape 

design. 

Advancements in artificial intelligence have enabled 

the application of SED in soundscape assessment. For 

example, Espejo et al. [17] explored the use of short-time 

acoustic indices in combination with artificial neural 

networks (ANNs) to monitor and analyze soundscapes in 

urban-natural environments. Similarly, Bonet-Solà et al. 

[5] developed a predictive model for assessing acoustic 

comfort in urban settings. Their approach integrates SED 

using convolutional neural networks with noise data 

collected from wireless acoustic sensor networks 

(WASN), offering a sophisticated method for evaluating 

and improving urban acoustic environments. 

To effectively visualize the acoustic status of a large 

environment, a 2D color-coded heat map based on 

soundscape evaluation is a practical approach, as 

demonstrated by Yue et al. [18]. They developed a visual 

soundscape prediction model for urban park design, 

which integrates sound pressure levels, sound source 

perception, and soundscape evaluation using machine 

learning techniques. This model provides an intuitive 

representation of acoustic conditions, facilitating the 

design and optimization of urban soundscapes. 

3 The Proposed Framework 

Potential Applications and Use Cases 

Having a framework that allows monitoring the 

present and past values for a collection of psycho-

acoustic indicators as well as sound event categories for 

each room of an indoor environment, facilitates the 

comfort analysis, prediction, and visualizations through 

the digital twin web interface. It allows facility managers 

to better plan for acoustic insulation and activity planning. 

The occupants can consult the monitoring data to decide 

if a certain room is suitable in terms of acoustic comfort 

for their intended use. The stored data allows the 

application of predictive algorithms to recommend rooms 

for certain activity types or to predict the acoustic 

comfort of a certain room in a selected time period in the 

future. The integrated assessment algorithms can be 

further enhanced by including other sources of data, such 

as activity schedules for each room.  

The data can be used to identify sources of unwanted 

noise (such as background noise or noise pollution) and 

their effect on the neighboring rooms by cross-checking 

metrics of various neighboring spaces. Additionally, the 

system can accommodate user inputs to provide 

personalized metrics and Key Performance Indicators 

(KPIs) for individuals. Moreover, the system can 

communicate information about the acoustic comfort 

preference of neighboring occupants to the occupants of 

a certain room to adjust their noise-generating activities 

accordingly. Finally, it can give insights and predictions 

regarding outdoor noise. 

Framework 

The framework consists of a five-layered architecture, 

as depicted in Figure 1 (left). Starting from the bottom of 

the diagram: 

1. In the data acquisition layer, sound is captured by 

microphones and converted to a digital signal via an 

analog-to-digital converter (ADC). Using the 

device-specific interface, the audio signal, in a 

binary stream format, along with the device-

specific metadata such as sampling rate, 

microphone sensitivity, microphone type, and the 

location coordinates of the microphone, is prepared 

for subsequent processing. The data acquisition and 

data processing layers are distinct; however, they 

can be implemented on a single device, enabling 

high-speed data transfer through shared memory or 

inter-process communication (IPC) interface. 

2. In the data processing layer, the audio data stream 

and device specifications from the data acquisition 

layer are utilized. This layer processes the input 

signal according to the requirements of its three 

modules, based on parameters such as the sampling 

rate and device specifications. The audio signal is 

resampled and formatted to meet the input 

requirements of the selected SED model. 

Additionally, soundwave parameters and 

psychoacoustic indicators are computed using the 

audio signal and accompanying metadata. The 

processed data is then sent to a cloud-based 

database to be stored as time-series data, utilizing 

either REST-based or SQL-based communication 

interfaces. Depending on the storage layer type, 
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data transfer can be conducted using GET and 

POST methods in the REST-based approach or 

directly via SQL queries. 

3. The storage layer manages both historical and real-

time data, ensuring continuous data availability for 

further analysis and processing. Notably, the 

recorded data includes metadata essential for the 

digital twin, such as microphone location 

coordinates, device identification, and room 

designation. This data can also be accessed through 

REST-based or SQL-based communication 

interfaces. 

4. The calculated parameters and metadata are 

retrieved from the cloud-based database in the logic 

layer. Based on the nature of the environment, the 

defined KPIs, and user- or environment-specific 

settings, this layer processes the data and prepares 

it for visualization. The logic layer can be 

implemented at any host platform, whether on a 

local or a cloud platform. It uses user inputs and 

commands gathered in the presentation layer and 

the data managed in the storage layer to perform 

various calculations and predictions. Additionally, 

it can integrate external data sources, such as 

Building Information Modeling (BIM) models, to 

allow 3D visualizations as well as access metadata 

related to the built environment that is used for 

comfort analysis. Depending on the presentation 

layer and whether it is remotely connected to this 

layer or operates on the same device, the processed 

data can be accessed through various 

communication interfaces, including REST-based, 

file-based, or shared memory communication 

methods. 

5. The presentation layer provides users with various 

visualization tools, including graphs, charts, and 2D 

or 3D heat maps. It also accepts user-defined 

settings and, through continuous communication 

with the logic layer, ensures that the system 

displays the desired outputs. This layer can be 

implemented either on an online digital twin 

platform or a local computer. 

Notably, in a real-world scenario, collecting data 

from multiple rooms requires additional instances of the 

implemented data acquisition and data processing layers. 

This scalable approach facilitates the integration of 

multiple rooms without significant computational 

constraints. The performance on each edge device may 

vary depending on the complexity of the Sound Event 

Detection (SED) model and the computational power of 

the edge device, but it is not dependent on the number of 

rooms. 

The proposed framework was adopted for the use 

case of sound event classification in an office building. A 

sound classification system that is integrated with the 

digital twin platform is developed, and a case study is 

performed to assess the applicability of the developed 

system. 

3.1 Case Study 

The case study was conducted in an office space 

within a public building. The room, measuring 106 

square meters, has an L-shaped layout with a ceiling 

height of 2.96 meters. It is typically used for meetings, 

classes, and various gatherings, but it also occasionally 

serves as a study or group work area for students. 

The objectives of this implementation are threefold: 

1. To develop a system capable of measuring a 

collection of soundwave parameters, classifying 

sound events, and transmitting the collected data to 

a cloud-based platform 

2. To develop a method for visualizing the collected 

data effectively 

3. To integrate the developed acoustic comfort 

measurement module into the existing digital twin 

The digital twin of the environment is implemented 

using Autodesk Platform Services. Time-series data is 

stored in Microsoft Azure Data Explorer, and the existing 

dashboard provides historical data visualization for 

parameters such as temperature, air pressure, air quality, 

and occupancy (Figure 2). 

In the case study implementation, a sound event 

classification neural network was utilized to categorize 

audio events. YAMNet [19], [20] is a pre-trained deep 

learning model with 521 output classes. For the case 

study, the model needs to be customized. For example, 

the existing classes are grouped into a smaller number of 

categories, tailored to the case study environment. 

Additionally, the model is required to be fine-tuned to 

enhance its accuracy for the given application. For 

effective grouping, it is important to consider the 

environment’s characteristics (e.g., a wild animal sound 

is unlikely to occur in an office, despite the existence of 

such a class in YAMNet sound categories). Based on the 

types of activities expected in the case study environment 

(an office), five main categories were defined (Table 1). 

Each YAMNet class was then reviewed and assigned to 

one of these categories. 

To capture sound, microphones are installed in the 

room. To achieve reliable results, selecting the right 

microphone (or an array of microphones) is one of the 

key design considerations for the implemented system. 

For example, the microphones should not perform active 

noise control (ANC) (i.e., noise cancellation), or modify 

the sound balance. Additionally, to efficiently perform 

the measurement and calculation of metrics, the 

microphone should be precise and sensitive to adequately 

capture sounds within its range of operation. In the case 

study, multiple identical microphones were installed at 
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different points of the room, each is connected to an edge 

device that analyzes the sound. The selection of 

microphone types depends on their placement location. 

In this study, omnidirectional microphones were used, 

featuring a signal-to-noise ratio (SNR) of 80 dB and a 

maximum sound pressure level of 110 dB. 

Table 1. The categorization of the possible sounds in the 

office and the number of corresponding YAMNet 

output classes 

Category Number of 

Classes 

Speech, Meeting 14 

Silence, Ambient Office Sounds 30 

Construction and maintenance work, 

Interruptions 
112 

Gathering, Crowded, Music 179 

Other Classes 186 

  

 

Installing microphones in the rooms may raise 

privacy concerns for occupants. As mentioned, a privacy-

by-design approach was followed in this implementation, 

in which the sound classification is performed on the 

edge devices in real-time using small snippets of the 

sound signal collected from microphones that are directly 

attached to them. The actual captured sound is not 

recorded or transferred over the network. In other words, 

the data acquisition layer and the data processing layer 

are implemented in one device, ensuring that the original 

sound signal remains secure and eliminating the risk of 

data leakage over data transmission in the network. 

The implemented system accommodates the 

measurement of the relative sound pressure levels as well 

as the sound event category identification. The 

implemented system allows the integration of new 

customized KPIs, considering the preferences of 

occupants and their intended activity within the space. 

The results are integrated and visualized in the developed 

digital twin platform of the facility, which is the primary 

source of information and a tool for monitoring and 

performing predictive analytics. The architecture of this 

implementation is depicted in Figure 1(right). 

3.2 Visualization of Sound Content 

Although various types of data visualization methods 

can be easily created based on the data generated in the 

logic layer, a combination of bar and line charts is the 

preliminary visualization method (Figure 3). It allows 

visualizing classifications with color-coded bars overlaid 

by various line charts that show calculated metrics. As an 

example, the relative sound pressure level, defined in 

Equation (1), is illustrated in Figure 3. The graph has the 

date and time on the horizontal axes, which allows visual 

analysis of the changes in acoustic metrics and indicators 

during a certain day. 

 

Equation (1) represents the relative sound pressure 

level (𝑆𝑃𝐿𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒). The input to the logarithm function is 

the Root Mean Square (RMS) value of the microphone’s 

output, obtained using the PyAudio library at a 16 kHz 

sampling rate, and 16-bit audio depth, continuously 
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Figure 1. The Proposed Framework Layers (left) 

and the case study implementation (right) 
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calculated over a defined interval (1-second) within the 

(-1, 1) range. The output of this equation falls within the 

(-inf, 0) dB range, and can be a relative measurement of 

the sound pressure level in an environment. Notably, this 

value cannot be directly used or compared with 

established comfort thresholds in the environment unless 

it is converted to absolute sound pressure levels. 

 

Figure 2. The existing digital twin of the office in 

Autodesk Platform Services 

 As depicted in the graph (Figure 3), the sound data 

over a seven-hour period is classified and visualized. The 

relative sound pressure level is represented in a dark blue 

line graph. The Construction and maintenance work/ 

Interruptions category is highlighted in red. The 

Gathering/Crowded/Music category is shown in purple, 

while the Silence/Ambient Office Sounds (such as printer 

noise) category is displayed in light blue. The “Other 

Classes” category is represented in dark grey. 

Using these color codes and reading the graph from 

left to right, a meeting is detected from approximately 

11:30 a.m. for two hours, represented in yellow. This is 

followed by a two-and-a-half-hour period of silence, 

shown in light blue. Finally, starting at 5:00 p.m., another 

meeting is observed for about two hours. 

 

This chart is accessible through the digital twin 

platform’s web interface by clicking on the acoustic 

monitoring icon available for each room. 

4 Conclusions and Future Work  

The focus of this paper was to provide a framework 

to perform acoustic comfort analysis by combining 

various metrics and indicators together with sound event 

category identification within a digital twin. Regarding 

SED models, YAMNet is used in the case study. 

However, various other models, such as SoundNet [21], 

Google's VGGish, HuBERT [22], OpenL3 [23], the 

CRNN proposed in [24], DENet [25], SincNet [26], and 

COPE [27] can also be used. YAMNet was selected for 

this study as it is a lightweight model suitable for 

implementation on edge devices, and it offers acceptable 

performance. Additionally, it is pre-trained and is 

adaptable to various types of environments. However, to 

get the best results, the performance of these networks 

should be evaluated and compared based on specific use 

case and fine-tuning. 

The selection of both the microphone and sound 

interface plays a critical role in ensuring classification 

accuracy and precise measurement of acoustic 

parameters. Using a microphone with an inappropriate 

directional type in relation to its placement or one with a 

low signal-to-noise ratio (SNR) can limit the effective 

measurement range, creating blind spots in the system's 

sound classification capabilities. Furthermore, to fully 

utilize a microphone's potential, the sound interface must 

support high bit depth and sample rate, which are 

essential for capturing maximum acoustic data from the 

environment for further analyses. 

The framework also included integrating acoustic 

measurements, such as acoustic waveform variables (e.g., 

sound pressure levels), psychoacoustic indicators (e.g., 

loudness), as well as sound event classification, into a 

digital twin platform. The potential applications of this 

𝑆𝑃𝐿𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒

= 20 ∗ log(𝑅𝑀𝑆(𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒)) 
(1) 

Figure 3. The Output Graph for Monitoring the Acoustic Status of the Case Study 
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framework were explored, and a case study was 

conducted in an office space, utilizing edge devices and 

an SED network to monitor both the current and 

historical status of the environment in a digital twin 

platform. 
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