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Abstract – 

 In the wood construction industry, timber 
structural defect detection is usually considered a pre-
manufacturing inspection step done manually. To 
address this issue, the proposed study discusses the 
timber structural defect detection method based on 
YOLOv8 variants. The evaluation matrices used are 
precision, recall, mAP.5, and mAP.5-.95, and the 
results indicate stable convergence and consistent 
accuracy on the complex dataset instances. This 
research contributes to the automation of timber 
defect detection for precise and robust manufacturing 
of timber structures. The proposed method further 
improves resource utilization and contributes 
towards eliminating waste in the residential 
construction industry. 
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1 Introduction 
Timber, a finished wood product, is a major building 

material for residential and commercial buildings 
worldwide. Timber exhibits unique structural capacity 
and fineness, making it suitable for panels, trusses, ridges, 
beams, and staircases. Like every other wood type, 
natural timber exhibits multiple defects due to genetic 
and growth factors, processing phase, and environmental 
and storage conditions [1]. Defective timber can harm the 
overall building integrity and durability and must be 
excluded in final processing. Surface defects like knots 
and burls originate from growth conditions and can easily 
be identified at an early stage of timber handling. 
Contrarily, twisting, warping, and splits often occur 
during the manufacturing and drying phases of finished 
stud handling, and many construction workshops use 
experts’ eye and appropriate angles for manual stud 
quality inspection and anomaly identification.  

Therefore, a low-cost, fast solution is needed to 
identify complex structural irregularities like twists and 
bends [2-5]. Machine vision and deep learning solutions 
are popular for object detection, which utilize CNNs to 
mimic human brain learning behaviors [6-8]. Some 
research proposes generalized novel algorithms utilizing 
different layering of CNNs [6,9], whereas other 
researchers focus on utilizing and fine-tuning the 
proposed novel and hybrid algorithms to better tune them 
for specific tasks, environments, and datasets [10-12]. A 
recent study on defect detection across variant timber 
types has combined image preprocessing techniques with 
CNN-based architecture to build a vision-enabled defect 
detection platform [13]. Another similar approach was 
utilized for precise sawing and grading automation in 
timber processing [14]. A method called EMINet uses 
cross-fusion modules for the surface defect detection of 
sawn timber  [15]. This algorithm is designed to learn and 
infer multi-scale features with greater speed and accuracy. 
Xi et al. have utilized SPD-Convolution, SiAFF-PA Net, 
and multi-attention mechanisms in their model to refine 
the localization and classification of timber defects [16]. 
Furthermore, different types of stained wood grain 
defects have been discussed in literature by incorporating 
CNN architecture to boost the quality inspection and 
grading mechanism defects [17].  

Image detection algorithms can be divided into two 
categories: two-stage detection and one-stage detection. 
R-CNN (Region-based Convolutional Neural Network) 
[18], Fast R-CNN [19], and Faster R-CNN [20] are 
popular two-stage models comprising region proposal 
blocks and classification blocks. Whereas the one-stage 
object detection has a unified region proposal generation, 
and classification mechanisms are proposed in YOLO 
(You Only Look Once) [21-24] and SSD (Single Shot 
Multibox Detector) [25]. Regarding timber defect 
detection, the YOLO series has been enhanced in several 
ways to boost detection accuracy and specified classes. 
BDCS-YOLO is an enhanced method that showed a 12.3 
percent improvement in timber defect detection and 
sawing for resource optimizations [13]. Another study 
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has used the SimAm module and Ghost convolution to 
improve YOLOv5, reducing the computational costs for 
wood surface defects [26]. Another study has focused on 
efficiently detecting cracks in wood surfaces by 
proposing ICDW-YOLO algorithm [27]. 

Besides multiple pieces of research exhibiting good 
performance on surface-level defects such as minor 
cracks, knots, and stains, it is clear from the literature 
study that no significant work has focused on utilizing 
computer vision to inspect physical defects such as bends, 
twists, and missing of wood parts within timber studs. 
This research is focused on generating industrial 
solutions for the precise localization of defective parts 
using the YOLOv8 algorithm. To automate the precise 
detection of structural defects in timber studs, this 
research begins with the data collection and generation of 
the timber stud structural defect detection dataset, 
specifically focusing on twists and bends. The developed 
dataset is used for training and prediction using the 
YOLOv8 image detection method. An extensive study of 
evaluation matrices is performed on multiple variants of 
YOLOv8 (YOLOv8nano, YOLOv8small, 
YOLOv8medium, YOLOv8large, YOLOv8x_large) to 
balance the overall system accuracies and computational 
cost [2]. Moreover, due to the complexity of the task 
nature, a prediction study is discussed, emphasizing the 
importance of initial setup settings during data collection 
in the overall success of deep learning training.  

The precise and easy timber defect detection system 
can minimize the wasting of complete studs and 
maximize material utilization, potentially reducing the 
additional tree harvest. Furthermore, prior screening of 
timber quality can reduce repair overengineering 
resulting in durable construction. These factors 

contribute towards decarbonizing the construction 
industry and helping easily adopt natural timber as a 
cheap, sustainable material, lessening carbon emissions. 
This research can also directly advance industrial 
practices of automating timber inspection using computer 
vision and robotics. 

The overall flow of the study is shown in Figure 1, 
and the key steps involve dataset preparation, explained 
in Section 2; model training on YOLOv8 variants 
detailed in Sections 3, 4, and 5; and model prediction 
results are presented in Section 6, followed by conclusion 
and discussion of future insights. 

2 Dataset Preparation 
Timber studs are used in the manufacturing of wood 

buildings as wall panels, roof trusses, floor units, and 
supporting ridges, and they vary in dimensions a lot. An 
average stud can be 2-4 meters long, 2-4 inches wide, and 
4-8 inches in depth and have a face side (the wider and 
flatter surface) and an edge side (the narrower surface). 
They can vary hugely depending on the grade and species, 
moisture contents, load requirements, and code 
compliances. The changes in shapes and structural 
integrity of these timber studs, called structural defects, 
can occur due to drying, external stress, and improper 
seasoning. Bend (curvature along the length of stud), 
twist (spiral warping), bow (curve along the face side), 
cup (curve along the width), and warp (an amalgamation 
of bends, twists, and bows) are categorized as structural 
defects.  

Table 1 shows the dataset preparation steps and their 
details. As the defect can form at any angle or side, we 
have used 3 camera heights (2 feet, 6 feet, and 18 feet) to 

Figure 1: Proposed Tasks flow in timber defect detection. 
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capture the pictures of a stud on both sides (face and 
edge). A total of 15 studs, with 12 defective and 3 non-
defective, are used to generate 400 multi-dimensional 
images. These images are manually cleaned to remove 
irrelevant details and are resized to 640 x 640 sizes to be 
fed to the YOLOv8 models. LabelImg [28] is a tool for 
ground truth generation for popular image detectors and 
is used here to annotate the dataset, creating defect class  
bounding boxes. The images showing no defect are not 
assigned to the defect class and are passed to the model 
training as background images. After cleaning and 

annotations, the final dataset comprising 285 images with 
defects and 65 background images is split stud-wise for 
training, validation, testing, and prediction at 65%, 15%, 
15%, and 5%, respectively.  

The dataset generation and model training for 
structural defects is tricky, as a defect visible on the face 
side at a particular angle may not be detectable across the 
edge and vice versa. The complexity of the task can be 
seen in Figure 2, which shows some real instances from 
the dataset generated.   

Table 1: Timber Stud Surface Defect Detection Dataset preparation steps. 

Phase Parameter Value 

Initial Setup  Stud sides 2 (face, edge) 
Camera heights 3 (2 feet, 6 feet, 18 feet) 

Data collection  

Total studs 15 
Defective studs 12 

Non-defective studs 3 
Total images 400 (varying dimensions) 

Resizing, cleaning, and 
annotations  

Total images after data cleaning 350 (640 x 640) 
Background images 65 

Annotated with class: Defect 285 

Model training  

Training (65 %) 10 studs, 234 images 
Validation (15 %) 2 studs, 48 images 

Testing (15 %) 2 studs, 48 images 
Prediction (5%) 1 stud, 20 images 

 

Figure 2: Instances of dataset (a) a bended stud captured from 2 feet height (b) the defect captured from 18 
feet height (c) missing wood defect (d) bended and twisted stud from the edge (e) an example of twist and 
bend (f) background instance showing no defect 
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3 YOLOv8 Method 
YOLO is a one-stage detection model that combines 

the predecessor's functionalities into improved 
architecture in its version series. YOLOv8 [2] is an 
adaptable and efficient model comprising three main 
modules. The initial backbone is a variant of CSPDarknet, 
used for multi-scale feature extraction in the model. The 
second unit, called the neck, implements the PAN-FPN 
module for feature aggregation, and finally, the head 
contributes to object classification and bounding box 
regression. One powerful feature of YOLOv8 is the real-
time prediction generation that supports inspection-based 
applications for faster, lightweight, and more accurate 
real-time detections. The trade-off between speed and 
accuracy is well-managed in YOLOv8, which provides 
precise detections at the rate of high throughput. 
Moreover, the refined multi-scale feature fusion of this 
model makes it best suited for the current case of 
structural defect detection where the images are captured 
from different heights, offering multi-sized imperfection 
instances. 

As the available dataset is of small size, the training 
is run on different variants of YOLOv8 to achieve high 
performance, considering factors of resource 
optimization, overfitting avoidance, comparative 
performance analysis, scalability and adaptation. These 
variants are YOLOv8 nano, YOLOv8 small, YOLOv8 
medium, YOLOv8 large, and YOLOv8 extra-large, 
exhibiting different training speeds, computational 
requirements, and number of trainable parameters. From 
nano to large, these variants differ based on the layer 
count, sizes, and trainable parameters, and support 
limited to industry real-time applications. 

4 Model Training 
After the dataset preparation and splitting of the 

dataset, the data is passed to YOLOv8 variants for 
training and validation. Table 2 discusses the training 
machine specifications. The model is trained with the 
generated dataset on a machine with Central Processing  

Table 2: Training machine specifications. 

Property Value 
CPU Intel(R) Core(TM) Ultra 9 

185H  2.50 GHz 
GPU NVIDIA GeForce RTX 4070 

Laptop GPU (8,188 MiB 
VRAM) 

CUDA version 11.2 
Operating System Windows 11 Home 

RAM 64 GB 
Python version  3.9.20 

PyTorch version 2.5.1+cu121 

Table 3: Model Training parameters on YOLOv8 

Unit (CPU) Intel(R) Core(TM) Ultra 9 185H  2.50 GHz, 
Graphics Processing Unit (GPU) NVIDIA GeForce RTX 
4070 Laptop GPU (8,188 MiB VRAM), 64 GB RAM 
(Random Access Memory), with installed version of 
CUDA 11.2, python 3.9.20 and Pytorch 2.5.1+cu121. 

As the generated timber stud structural defect 
detection dataset is small and multifaceted, the training 
was performed on different hyperparameters to choose 
the best settings suitable for better accuracy, and Table 3 
shows the carefully selected set of model training 
parameters on YOLOv8 variants. These hyperparameters 
were chosen to balance generalizability and 
computational efficiency, given the dataset constraints.  
The input image size is 640 x 640 with a batch size kept 
at 8 trained for 250 epochs during each model training. 
The batch size was selected based on the GPU 
availability to avoid any computational instability. The 
learning rate is initiated with 0.001, momentum of 0.937, 
and weight decay of 0.0005 to achieve a smoother 
convergence. The training was also set to early stopping 
to save the best-trained parameters for inference. During 
real-time image capturing for real-time inference, the 
brightness and hues vary greatly depending on the 
workshop environment and lighting conditions. To make 
the training robust of inference time conditions, the data 
augmentation is kept true during the training, and the 
augmentation parameters are passed as hue 0.015, 
saturation 0.7, and value 0.4, and the mosaic set is kept 
on. These data augmentation settings can avoid the 
overfitting of smaller datasets, making the model resilient 
to surrounding conditions by slightly changing the 
picture effects during training. 

5 Evaluation Metrics 
Typically, YOLOv8 does not support model testing 

on a different dataset. Instead, it generates the model 
predictions based on the trained weights. However, to 
assist the optimization study and hyperparameter 
evaluation, this study used a separate model testing 
mechanism by passing the unseen test images to a 
separate model evaluation method. This proved effective 
for understanding the real model accuracies and 
finetuning accordingly.  

Parameter Value Parameter Value 

Image Size 640 x 
640 Epochs 250 

Batch Size 8 

Augmentation 

hsv_h=0.015 
Learning 

rate 0.001 hsv_s=0.7 

Momentum 0.937 hsv_v=0.4 
Weight 
Decay 0.0005 mosaic=1.0 
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Table 4: Variants of YOLOv8 and their specifications 

YOLOV8 
Variants 

#Layers #Params Val Precision 
(%) 

Test Precision 
(%) 

Val Recall 
(%) 

Test Recall 
(%) 

YOLO8nano 225 3,011,043 79.5 62.8 63.0 72.3 
YOLO8sml 225 11,135,987 74.1 60.9 67.4 74.5 
YOLO8med 295 25,856,899 93.0 74.8 60.9 72.3 

YOLO8lg 365 43,630,611 85.7 79.8 60.9 67.1 
YOLO8x_lrg 365 68,153,571 84.1 66.3 57.4 62.8 

The evaluation metrics used for the inspection of 
model training and testing are precision (P), recall (R), 
and mean average precision (mAP) of the predicted 
bounding box of defects. Precision counts the correct 
predictions from all prediction instances, whereas recall 
counts the correct predictions out of all actual predictions. 
The formula for precision and recall is given in Equation 
(1) and Equation (2). 

𝑃𝑃 =  
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
 

 

(1) 

𝑅𝑅 =  
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹
 

(2) 

In Equation (1), P indicates precision, whereas TP 
and FP donate true positives and false positives, 
respectively. In Equation (2), R represents recall, and TP 
and FN present true positives and false negatives.  

Mean average precision (mAP) considers the 
classification and location accuracy, and mAP.50 and 
mAP.5:.95 are reported here. mAP.50 reports the average 
precision of the model when the intersection over the 
union (IOU) threshold is 50% or up between predicted 
and ground truth bounding boxes. mAP@.50:.95 is 
another metric that computes the average precision for 
IoU thresholds ranging from 0.50 to 0.95 in 0.05-step 
increments. This metric is more critical than mAP@.50 
since it penalizes projections far from ground truths and 
displays the model's ability to precisely locate objects. A 
high mAP@.50:.95 value indicates greater performance 
in localization and classification. 

6 Discussion of Results 
As indicated in Table 4, the number of layers and 

trainable parameters are increasing from YOLOv8nano 
to larger models. The validation and test results indicate 
varying accuracies of these trained models on the timber 
defect dataset. The validation and test precision for 
YOLOv8 nano, YOLOv8 small (sml), YOLOv8 medium 
(med), YOLOv8 large (lrg), and YOLOv8 extra-large 
(x_lrg) are 79.5% and 62.8%, 74.1% and 60.9%, 93.0% 
and 74.8%, 85.7% and 79.8%, 84.1% and 66.3% 

accordingly. The validation and test recall for YOLOv8 
nano, YOLOv8 small, YOLOv8 medium, YOLOv8 large, 
and YOLOv8 extra-large are 63.0% and 72.3%, 67.4% 
and 74.5%, 60.9% and 72.3%, 60.9% and 67.1%, 57.4% 
and 62.8% accordingly. These results indicate that 
YOLOv8 medium and YOLOv8 large are best suitable 
for the current detection task, as the precision is high for 
these models, which means the model is detecting true  
instances and recall is comparatively better, 
demonstrating fewer missed detections.   

The training precision is shown in Figure 3, and it is 
visible that all models try to converge between 100-200 
epochs with a slight increase in precision afterward, but 
the YOLOv8 large training curve indicates a loss in 
accuracy in later epochs, indicating that the model is still 
trying to learn new parameters due to its large size.  

The training mAP.5 (B) and mAP.5:.95 (B) for all 
models in Figures 4 (a) and (b), respectively, indicate a 
similar pattern as precision(B) where models can achieve 
between 63% to 73% metrics for mAP.5 and between 35 % 
to 40% mAP.5-.95.  These converged graphs show that 
models are neither over-fitting nor under-fitting, 
provided the toughness, small-scaled and complexity of 
the dataset.  

Moreover, the final validation and test mAP.5 (B) and 
mAP.5:.95 (B) for all models are presented in Figure 5. 
This comparative graph indicates around 75% and 70% 
of validation and test mAP.5 (B) and around 45% and 38% 
achieve validation and test mAP.5:.95 (B). These values  

Figure 3: Training Precision in percentage 
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Figure 4: (a) Training mAP(.5)(B) in percentages (b) Training mAP(0.5-0.95)(B) in percentages 

 
Figure 5: Validation and Inference results on 
YOLOv8 variants 

demonstrate effective learning and consistently high 
capabilities, indicating that the models are generalized 
well on unseen data. Moreover, YOLOv8 medium and 
large are two modules that consistently achieved superior 
accuracies and precision, which confirms their ability to 
perform reliably in real-world scenarios.  

Based on the collected results, YOLOv8 medium-
trained weights are selected for model inference so that 
the images from one defective stud are passed to generate 
predictions, presented in Figure 6. The model generates 
predictions for the same defective studs differently when 
different angles of images are provided. The instances 
captured from 2 feet height generated a bounding box 
with high accuracy (a,b,c), but the top views 6 feet and 
16 feet high indicate a gradual decrease in precision (d,e). 

Figure 6: The difference in prediction accuracies based on different camera angles. 
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These observations provide valuable insight into the 
number of cameras, optimized camera installation 
location, and images needed for effective real-world 
predictions using the provided setup and methods.  

As the number of defective studs in a working 
industrial setting is limited, so based on data availability, 
the number of defective and non-defective studs was 
adjusted to create a balanced trainable dataset, totalling 
15 studs. The smaller datasets are highly prone to 
overfitting issues, compromising overall model 
authenticity and generalizability. To tackle this issue, a 
careful selection of hyperparameters and data 
augmentation was adopted while training with different 
modules of YOLOv8. In the future, this research can 
extend to collect and expand the dataset length to 
enhance accuracy and attain better results. Further, a 
performance comparison between other state-of-the-art 
and latest image detection training models can also be 
conducted. 

7 Conclusion 
This research discussed timber stud structural 

defect detection dataset preparation steps followed by the 
extensive model training on YOLOv8 variants, 
specifically focusing on detecting bends, twists, and 
wraps in timber studs used in wood house construction. 
The quantitative results indicated a balance between 
accuracy and computational efficiency, whereas 
YOLOv8 medium and YOLOv8 large demonstrated the 
high validation and test precision of 93.0%, and 74.8%, 
85.7%, and 79.8%, respectively.  The predictions 
generated provided knowledge about the best device 
placement and total frames for real-time prediction 
precision, and the predicted defect bounding boxes can 
be used for precise automated cutting of defective parts. 
This research will help reduce carbon emissions through 
resource utilization optimization and waste mitigation in 
the construction industry. Moreover, it advances 
computer vision and robotic automation in the Canadian 
wood construction industry. The proposed methods can 
be expanded to accommodate other types of timber 
defects, expand the dataset, and automate other pre- and 
post-manufacturing inspection steps.  
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