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Abstract 

For progress monitoring in the construction 
industry, understanding the state of construction sites 
is crucial. However, traditional manual inspection 
methods are labor-intensive and time-consuming. To 
address these challenges, various methods for 
creating 3D models of job sites have been explored. 
Professional equipment such as LiDAR and laser 
scanners offer the most accurate means of generating 
point clouds (PCDs) and constructing 3D models. 
However, these tools are expensive, cumbersome, and 
often impractical for frequent use in dynamic 
construction environments. Recently, with the 
advancement of deep learning, 3D reconstruction 
techniques have been extensively studied and applied 
across various fields. Among these, Structure from 
Motion (SfM) stands out as a method capable of 
generating PCDs and estimating camera poses. Based 
on advancing capabilities of SfM, many research has 
been conducted to measure progress monitoring in 
construction field. However, most studies that have 
utilized SfM for progress monitoring have acquired a 
large number of images and ensured significant 
overlap in input data to enhance the robustness of the 
3D model. While this approach provides a highly 
accurate 3D reconstruction, the image acquisition 
process itself introduces additional labor-intensive 
tasks. Therefore, this study aims to adhere to the 
fundamental nature of 3D reconstruction by 
evaluating the performance of various SfM models 
using only 26 images captured from a brief video 
recording at a construction site. The findings aim to 
evaluate the applicability of various SfM technologies 
with limited data, in real-world construction 
scenarios and finally provide insights into their 
potential and future directions. 
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1 Introduction 
In the construction industry, progress monitoring is 

essential to ensure project efficiency, quality, and 
adherence to timelines. Traditional monitoring methods 
often rely on manual inspections and reports, which can 
be time-consuming, error-prone, and inconsistent. As a 
solution, 3D modeling techniques have gained attention 
for their ability to provide comprehensive information of 
construction sites [1, 2, 3].  

To generate 3D models of construction sites, 
equipment such as LiDAR and laser scanners are widely 
used, offering the ability to produce highly accurate and 
dense point clouds (PCDs). For instance, Hu et al. 
utilized LiDAR to scan 3D surfaces of opencast quarries, 
enabling the analysis of slope stability. Similarly, Wang 
et al. employed laser scanners to rapidly perceive heavy 
construction equipment such as tower crane, improving 
safety and productivity in construction environments. 
Despite their accuracy and utility, these tools are 
expensive, bulky, require extensive training to operate, 
and involve significant time for scanning, making them 
less practical for dynamic and fast-paced construction 
site conditions [3, 4, 5].  

These challenges have driven researchers to explore 
alternative methods for 3D reconstruction. With the 
advancement of deep learning and computer vision, 
techniques using 2D images to create 3D models have 
garnered significant interest [1]. While such methods 
may compromise lower accuracy compared to 
specialized equipment, their accessibility, ease of 
implementation, and reduced scanning time make them a 
promising alternative [1, 4]. Among these approaches, 
Structure from Motion (SfM) stands out as a 
photogrammetric technique capable of not only 
constructing 3D models from 2D images taken from 
varying perspectives, but also estimating camera poses 
which include their positions and orientations [6]. 

Using these strengths of SfM, research on progress 
monitoring based on SfM in the construction field has 
been actively conducted. However, these studies 
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focusing on the 3D reconstruction of actual construction 
sites, particularly interior environments, remain 
insufficiently explored. Additionally, achieving higher 
accuracy in SfM models often requires a large number of 
images and to be overlapped to some extend. Hence, 
acquiring such extensive image datasets in complex 
construction sites is challenging and may lead to even 
more cumbersome issues. 

By utilizing image data captured within a very short 
time frame and comparing multiple SfM frameworks, 
this study aims to identify the challenges and 
opportunities of applying SfM in construction 
environments, thereby contributing to a deeper 
understanding of its potential in the industry. 

2 Literature Review 

2.1 Structure from Motion (SfM) 
Structure-from-Motion (SfM) is a technique that 

builds 3D point clouds (structure) from cameras (motion). 
SfM is typically categorized into incremental and global 
approaches. In incremental SfM, the process begins by 
aligning an initial pair of images, followed by the gradual 
addition of new images. This method iteratively performs 
feature matching and bundle adjustment (BA), 
progressively constructing the 3D structure. In contrast, 
global SfM employs deep learning-based feature 
matching across multiple images, enabling a faster and 
more efficient reconstruction process. This approach 
estimates camera poses and reconstructs the 3D structure 
in a global, batch-wise manner rather than incrementally.  

COLMAP [7] is one of the dominant incremental 
SfM tool in computer vision field due to its robustness 
and efficiency. It employs the Scale-Invariant Feature 
Transform (SIFT) algorithm, which ensures reliable 
feature matching even under image rotations and lighting 
variations. Furthermore, COLMAP uses the Ceres 
Solver-based BA to reduce accumulated errors, thereby 
enhancing reconstruction accuracy. As mentioned before, 
with the advancement of deep learning, global SfM 
methods also have been developed. 

 VGGSfM [8], one of the newest global SfM model, 
has been developed as an alternative to traditional 
incremental SfM methods. Unlike conventional 
approaches, VGGSfM jointly estimates all camera poses 
using a Transformer-based architecture, offering a 
simpler and more differentiable process compared to the 
combinatorial correspondence chaining step. 
Additionally, for BA, VGGSfM replaces the 
nondifferentiable Ceres Solver with the fully 
differentiable second-order Theseus Solver, further 
improving computational efficiency and scalability. 

2.2 SfM in Construction Site 
Although SfM cannot build 3D models as accurately 

as TLS or LiDAR, it has been widely studied due to its 
affordability, accessibility, and ability to perform spatial 
mapping to a certain extent. Ding et al. explored indoor 
scene understanding using 304 images captured with a 
widely used consumer-level camera and conducted 3D 
reconstruction using VisualSfM [5]. The strong 3D 
reconstruction capability significantly contributes to 
scene understanding, which has led to extensive research 
on its applications in progress monitoring.  

Studies have also been conducted to evaluate 
COLMAP’s powerful performance within the 
construction domain, emphasizing its potential 
applicability in this field. Keyvanfar et al. applied nine 
different 3D reconstruction models, including COLMAP, 
to visualize construction sites [9]. In their study, they 
utilized 138 images captured using an Unmanned Aerial 
Vehicle (UAV), ensuring a more robust 3D 
reconstruction by acquiring images with 60–80% overlap. 

In addition to studies that solely utilized SfM for 
progress monitoring, research integrating SfM with other 
technologies has also been conducted. Mahami et al. and 
Han et al. employed SfM combined with Multi-View 
Stereo (MVS) to construct 3D models and align them 
with as-built Building Information Model (BIM) 
elements for progress monitoring [10, 11]. Additionally, 
some studies have leveraged SfM-based camera pose 
estimation to generate denser 3D models. For instance, 
Pal et al. developed an SfM-MVS-based 3D 
reconstruction pipeline to estimate camera parameters 
from 2D images and incorporated Neural Radiance Field 
(NeRF) and semantic segmentation to predict progress 
completion [1].  

Although numerous studies have explored the 
application of SfM in the construction industry, many of 
these approaches have prioritized achieving more robust 
and dense 3D reconstructions by utilizing high-resolution 
cameras or capturing images with significant overlap to 
enhance feature matching. Consequently, rather than 
fully exploiting SfM’s inherent advantages, these 
methods introduce constraints related to data acquisition, 
limiting their practical applicability. 

3 Case Study 

3.1 Overview 
To conduct a 3D reconstruction study in a real 

construction environment, we visited a construction site 
located in Seongdong-gu, Seoul, and acquired image data. 
A specific room within the construction site was selected 
to compare the performance of different 3D 
reconstruction methods. Image acquisition was 
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performed using the Insta ONE X2 fisheye camera, 
which facilitated rapid data collection by capturing 
images in all directions with a single shot. The captured 
footage was converted into perspective images, and a 
total of 26 images from the selected room were used for 
the comparative analysis between COLMAP and 
VGGSfM. All of the converted images have resolution of 
4320 × 2880. The workstation used for the case study 
was equipped with 32 GB of RAM, a Core i7-12700KF 
CPU, NVIDIA GeForce RTX 3080 Ti GPU and CUDA 
version 11.3 was utilized for GPU acceleration. 

3.2 Evaluation Metrics 
To quantitatively compare the results of 3D 

reconstruction, not only the number of 3D points and 
processing time but also three key metrics were used: 
mean track length (MTL), mean observations per image 
(MOI), and mean reprojection error (MRE). These 
metrics provide insights into the robustness, contribution, 
and accuracy of the reconstruction process [12]. 

MTL is the average number of images in which a 3D 
point is observed. It measures the frequency with which 
3D points are visible across the set of input images, 
providing insight into the robustness of feature matching 
and triangulation in the reconstruction process. 

MTL =
∑ 𝐿𝐿𝑖𝑖𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 

 
(1) 

Where 𝑁𝑁  denotes total number of 3D points in 
reconstruction, 𝐿𝐿𝑖𝑖 the number of images in which the 𝑖𝑖-th 
3D point is observed. 

MOI is the average number of 3D points observed per 
image. This metric evaluates how much each image 
contributes to the 3D reconstruction, indicating the 
distribution of feature matches across the dataset. 

MOI =
Total Observations
Number of Images

 (2) 

MRE quantifies the average distance, in pixels, 
between the observed 2D points and their corresponding 
2D projections from the 3D points. It serves as a key 
indicator of the accuracy of the reconstruction and the 
quality of the camera parameters. 

MRE =
∑ |𝑁𝑁
𝑖𝑖=1 𝒑𝒑𝒊𝒊 − 𝒑𝒑𝚤𝚤� |

𝑁𝑁
 (3) 

Where 𝑁𝑁  denotes total number of 2D points, 𝑝𝑝𝑖𝑖  the 
observed 2D coordinates of the 𝑖𝑖 -th point, �̂�𝑝𝑖𝑖  the 
reprojected 2D coordinates of the 𝑖𝑖 -th point obtained 
from the estimated 3D point and camera parameters. 

4 Result Analysis 

4.1 Quantitative analysis 
The quantitative comparison of COLMAP and 

VGGSfM using the aforementioned metrics is 
summarized in the following Table 1. 

Table 1. Summary of quantitative comparison of 
COLMAP and VGGSfM 

Metrics COLMAP VGGSfM 
Number of 3D points 13,765 69,612 

Processing time 30m 33s 10m 35s 
MTL 1.22082 0.66221 
MOI 1,377.38 1,993 
MRE 1.08028 0.01852 

* Bold values indicate better performance 

(a) COLMAP (b) VGGSfM

Figure 1 Top view perspective of 3D reconstruction model of COLMAP(a) and VGGSfM(b) 

42nd International Symposium on Automation and Robotics in Construction (ISARC 2025)

1397



The number of generated PCDs was significantly 
higher for VGGSfM, with 69,612 PCDs compared to 
13,765 PCDs for COLMAP, a difference of 
approximately 55,000 points. In terms of processing time, 
VGGSfM was approximately 20 minutes faster than 
COLMAP, completing the task in 10 minutes and 35 
seconds compared to COLMAP’s 30 minutes and 33 
seconds. 

While MTL was 0.6 higher for COLMAP, for MOI, 
VGGSfM showed a higher value by about 600, indicating 
that images contributed more effectively to PCD 
generation. Moreover, the MRE for VGGSfM was about 
1 lower than COLMAP, suggesting that VGGSfM's 
PCDs better explain the observed data. 

Overall, VGGSfM demonstrated superior 
performance compared to COLMAP in all metrics except 
for MTL, which can be attributed to dataset-specific 
characteristics rather than model performance.  

4.2 Qualitive analysis 
Figure 1 presents the results of 3D reconstruction 

projected from a top-view perspective. In the case of 
COLMAP (Figure 1(a)), the room's shape appears 
inconsistent and scattered compared to VGGSfM (Figure 
1(b)). Additionally, the floor area in the middle of the 
room is poorly reconstructed in COLMAP, whereas 
VGGSfM provides a more complete representation. 

Figure 2 compares the reconstruction outputs of a 
wall using a 2D image (Figure 2(a)) as input, with results 
from COLMAP (Figure 2(b)) and VGGSfM (Figure 2(c)). 
As shown, COLMAP effectively captures distinctive 
lines and patterns, demonstrating its strength in feature-
specific reconstruction. In contrast, VGGSfM produces a 
more uniformly distributed PCDs, reflecting a balanced 

and comprehensive reconstruction. 
On the other hand, both models share a common 

limitation compared to laser scanners, as they rely solely 
on 2D input data for reconstruction. This constraint 
results in missing information in areas with bright 
occlusion or insufficient feature data. 

5 Discussion 
In this section, we compare not only COLMAP and 

VGGSfM but also various other SfM models. Meshroom 
[13] is an incremental SfM model that offers ease of use 
through a graphical user interface (GUI), whereas 
OpenMVG [14] is a global SfM model based on a 
command-line interface (CLI). The same set of 26 
images used in the case study was used as input data for 
both models. 

The processing time for Meshroom was 
approximately 21 seconds, while OpenMVG took 19 
seconds. The number of generated 3D points was 8,587 
for Meshroom and 3,174 for OpenMVG. Although both 
models demonstrated significantly faster processing 
times compared to COLMAP and VGGSfM, their 
reconstructed 3D models were insufficient for scene 
understanding, as shown in Figure 3. On the other hand, 
considering the perspective of SfM's camera pose 
estimation accompanying with fast processing speed, 
these models can serve as effective preprocessing tools 
for generating dense 3D models using methods such as 
MVS or NeRF. Their ability to provide camera positions 
makes them suitable for applications where precise pose 
estimation is essential for subsequent reconstruction 
processes. 

Figure 2 Reconstruction outputs of wall: (a) 2D image of wall (b) COLMAP (c) VGGSfM 
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Table 2. Summary of Meshroom and OpenMVG 
Metrics Meshroom OpenMVG 

Number of 3D points 8,587 3,174 
Processing time 21s 19s 

* Bold values indicate better performance  

6 Conclusion 
In this study, we explored the applicability of SfM 

models, in real construction environments. For this 
purpose, we compared two SfM models: COLMAP, one 
of the most widely used SfM models, and VGGSfM, a 
more recently developed framework. Comparison 
revealed that VGGSfM outperformed COLMAP in terms 
of the number of 3D points and processing time. 
Additionally, VGGSfM demonstrated superior 
performance in all metrics except for MTL. 

Qualitative comparisons also highlighted VGGSfM's 
advantages. VGGSfM more accurately depicted the 
arrangement of windows and walls, whereas COLMAP 
exhibited scattered and poorly defined spaces. In contrast, 
VGGSfM effectively delineated a finite outline of the 
room, successfully reconstructing the enclosed space. 

In discussion section, we also utilized two more SfM 
model of Meshroom and OpenMVG. These SfM has 
highly faster processing time of no more than 1 min, 
however, their number of 3D points were in proportion 
to the processing time. This result indicates that these 
models are not adequate for 3D reconstruction of scene 
understanding, on the other hand, in the perspective of 
preprocessing for building dense 3D models, they can 
serve camera poses of images in a short time. 

Besides, this study remains certain limitations. Since 
SfM relies solely on 2D images as input, bright 

occlusions can lead to a lack of PCDs. Also, the 3D 
reconstruction was conducted for a single room within 
the construction site. When attempting to reconstruct 
multiple rooms, challenges arise due to the inability to 
extract overlapping features from images capturing 
transitions through openings, such as doors. 
Consequently, reconstructing an entire construction site 
remains a challenge. Future studies will focus on 
overcoming these limitations by developing methods to 
integrate reconstructions of multiple rooms, ultimately 
facilitating a comprehensive understanding of 
construction sites and contributing to progress 
monitoring efforts. 
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