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Abstract -

Building Information Modeling (BIM) plays an impor-
tant role in building design and construction, particularly
for achieving energy-efficient retrofits. Building envelope
retrofits using panelized prefabricated system, such as those
popularized by the Energiesprong program, need accurate
as-built dimensions of facade features (windows, doors, etc.)
to achieve the desired thermal and air tightness. Tradition-
ally, building surveying is done manually, resulting in a time-
consuming and labor-intensive process. Recently, 3D point
clouds from terrestrial LIDAR have been used to automate
the generation of as-built dimensions of existing buildings.
However, automated BIM using LiDAR relies on solving the
point cloud semantic segmentation (PCSS) problem. In this
work, we propose a robust pipeline for solving the PCSS
problem using deep neural networks, focusing on overcom-
ing challenges posed by imbalanced datasets and complex
architectural features. We introduce the first high-density,
labeled, and validated building envelope point cloud dataset
derived from multiple building scans, specifically curated to
tackle challenges in facade-level segmentation. Results from
the trained neural networks show that advanced attention-
based architectures and incorporating radiometry (light in-
tensity and RGB) features significantly boost segmentation
accuracy for windows and doors.
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1 Introduction

More than 40% of the buildings in the United States were
constructed prior to 1980, when energy regulations were in
place [1]. Building envelope retrofits using prefabricated
overclad panels offer a promising solution to increase the
energy efficiency of these older buildings. Moreover, this
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process minimizes occupant disruption and has a high po-
tential for automation, shortening assembly time at the job
site and increasing overall construction quality. However,
this type of retrofit requires precise as-built dimensions
of the building to effectively design and manufacture the
overclad panels, highlighting the need for Building Infor-
mation Modeling (BIM) to create a digital twin. Creating
an as-built retrofit BIM involves measuring the geometry
of building facade features, such as windows and doors,
to produce a dimensional digital twin that facilitates the
design and installation of prefabricated overclad panels.
However, this process is often time-consuming, labor in-
tensive, and susceptible to errors. Therefore, automating
this process has substantial benefits when trying to achieve
building envelope retrofits at a large scale [2].

Recent advancements in 3D LiDAR scanning technolo-
gies have enabled the acquisition of high-density point
cloud data, providing detailed geometric representations
of scanned structures. However, point clouds are in-
herently unstructured, making the extraction of semantic
information—such as identifying facades, windows, and
doors—a complex but essential task for creating BIM-
ready datasets [3]. This process can be automated by
solving the Point Cloud Semantic Segmentation (PCSS)
problem, revolutionizing building surveying by eliminat-
ing the need for manual annotation and generated dimen-
sional twins in real time. Despite its promise, several chal-
lenges remain, particularly for datasets with imbalanced
class distributions and complex architectural features [4].
This study focuses on improving facade segmentation for
retrofitting applications by introducing a labeled and val-
idated high-density facade dataset, curated from multiple
building scans. This dataset bridges a critical gap in re-
sources required for evaluating advanced neural network
for solving the PCSS problem.

Two deep learning models were evaluated: PointNet++,
based on a multi-layer perceptron (MLP) architecture [5],
and the Superpoint Transformer (SPT), a transformer-
inspired model leveraging hierarchical feature learning and
attention mechanisms [6]. These models were fine-tuned
by training them on additional radiometry features, en-
abling richer feature representations and achieving supe-
rior segmentation accuracy. Furthermore, to address the
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inherent challenges of imbalanced datasets, where walls
dominate and classes such as windows and doors are un-
derrepresented, we employ a combination of sampling
techniques and weighted loss functions.

The structure of the paper is as follows. Section 2 re-
views related work on PCSS in the construction indus-
try, highlighting the need for labeled data. Section 3
details the dataset collection, labeling validation, post-
processing procedures, and the class distribution within
the dataset. Section 4 discusses the deep neural network
architectures used and their evaluation metrics. Finally,
Section 5 presents the results, while Section 6 presents the
conclusions and future work.

2 Related Works

2.1 PCSS applications in construction

Recent breakthroughs in deep neural networks have
led to the development of powerful deep learning mod-
els which can capture and learn texture, shape, and con-
textual information from images, accelerating the use of
computer vision in various applications. Semantic seg-
mentation is a widely used technique in computer vision,
which is the process of assigning a label to every pixel
in an image, indicating which category the corresponding
pixel belongs to. This helps in better scene understand-
ing of 2D images. Among various scene understanding
problems, 3D semantic segmentation is helpful in deter-
mining accurate object boundaries with similar patterns
along with their labels [7]. Unlike 2D images, 3D data
generated by laser scanners are unordered and invariant
to permutations, making it difficult for the deep neural
networks to learn the desired features [3]. Due to its
inherent nature, point clouds are subject to outliers and
noise. In addition, non-uniform point densities in various
regions affect point cloud feature learning. Deep learning
(DL)-based segmentation for point clouds has been used
in various applications such as robotics, industrial automa-
tion, autonomous driving [4] and 3D scene understanding,
enabling automated decision making in three-dimensional
space[8] . Datasets like KITTI[9] and nuScenes [10] are
widely used in benchmarking point cloud segmentation
algorithms and their performance in autonomous driving
in real world scenarios.

Given that, in general, old buildings lack an as-built, or
even an as-designed BIM, point cloud data has become
popular within the construction sector for 3D BIM gener-
ation. Recently, innovative methods have been developed
to efficiently create as-built BIMs for various construc-
tion projects, including envelope retrofits, re-cladding,
and window replacements. [11]. PCSS can be used to
generate accurate as-built BIMs from 3D laser scans of
the building, where the accuracy depends mainly on the
sensor and range. However, the efficiency of super-

vised machine learning used in PCSS is heavily depen-
dant on the available labeled training data. Currently, the
amount and variety of open source point cloud datasets
to train, validate, and compare new neural network ar-
chitectures are mainly limited to the autonomous driving
industry. Beyond autonomous driving, numerous datasets
like S3DIS featuring residential and commercial build-
ings focus on indoor room and office scenes captured us-
ing RGB-D devices [12]. Building exterior envelopes,
however, usually correspond to sparse urban datasets like
Semantic3D[13] and Toronto3D[14] collected using mo-
bile/aerial laser scanning technology and those featuring
[15] and [16] facade-level classes are of sparse density.
Therefore, it is essential to address the scarcity of dense,
accurately labeled point cloud data of exterior building en-
velopes, specifically designed for semantic segmentation
tasks aimed at enhancing productivity and reducing costs
in retrofit and new construction projects.

2.2 Class imbalance in real-world datasets

The performance of DL classification models is heavily
impacted by how well the data is distributed across the
different classes.[17] To achieve optimal performance, and
avoid overfitting on individual classes, the model has to
be trained on datasets that are as balanced as possible [7].
In a real-world point cloud scan of a building exterior
envelope, as much as 80% of elements can be classified as
walls points, while the rest correspond to features such as
windows and doors.

Standard learning algorithms assume balanced class dis-
tributions and severe imbalances like our application, can
lead to biased decision boundaries on under-represented
minority classes. This study[18] systematically analyzed
how imbalanced data skews model predictions towards
majority classes, leading to biased decision boundaries.
Due to the large presence of the wall points in real world
facade dataset like ours, the model can be heavily skewed
and can learn to over classify the majority group. Further-
more, class imbalance can distort the performance eval-
uation when using metrics such as accuracy, as correctly
classifying the major classes may yield high scores that
incorrectly indicate good performance [19].

3 Dataset Collection and Labeling

For data collection, we used the Leica MultiStation
MS60 to scan buildings across the ORNL campus. The
MS60 is a terrestrial laser scanner (TLS) that allows users
to customize scan density, enabling the collection of dense
scans with high accuracy. The lidar scanner returns the
Cartesian coordinates x, y, z and the light intensity [ of a
point on a surface measured by the laser. In addition,
the TLS is equipped with a 5 MPx RGB camera fea-
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Figure 1. Sample facades used for DeeP-CuBES

turing a CMOS sensor which takes captures images of
the scanned area to later interpolate the points with the
pixel RGB values. Therefore, the final raw point cloud
belongs to a seven-dimensional space with coordinates
[x y z I r g b]. A total of 25 building facades
across the ORNL campus were scanned and the point
clouds were initially cleaned to remove outliers such as
trees and other occlusions using CloudCompare [20]. A
subset of the facades collected is shown in Figure 1.

With the cleaned, pre-processed data of different in-
dividual facades, we used the ORNL-developed Auto-
matic point Cloud Building Envelope Segmentation (Auto-
CuBES) algorithm to accelerate data labeling [21]. Auto-
CuBES uses a sequence of unsupervised machine learning
methods, such as k-means and DBSCAN, to segment the
building envelope into wall points, windows points, door
points, and other categories (building extrusions) with an
accuracy of 3mm. Although Auto-CuBES is significantly
faster than manual segmentation, it requires several seg-
mentation steps which involve calibrating various parame-
ter values to segment window and door openings from the
wall points. The segmentation results from all building
scans were grouped into three classes: windows+doors,
walls, and others. The results from Auto-CuBES were
validated by comparing them to manual measurements of
the window dimensions (length and height) using the TLS
laser. Figure 2 shows the distribution of Mean Absolute
Deviation (MAD) observed in our dataset. Note that most
of the error distribution is heavily skewed toward lower val-
ues (ranging between O to 1/8 in), as indicated by the high
count in the first bin. Also note that the manual measure-
ments are not the actual ground truth, as it may be subject to
human inaccuracies. This result suggests that the segmen-
tation is accurate for most cases, with less than 10% of the
dataset having a MAD error greater than 1 inch. After la-
beling and validation, we created the Oak Ridge National
Laboratory Building Envelope Library (ORNOBEL) for
exterior building envelopes.
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Figure 3. Distribution of 223 million points within
the Oak Ridge National Laboratory Building Enve-
lope Library (ORNOBEL)

The ORNOBEL dataset consists of dense facade scans
of 25 different multistory buildings with 3mm accuracy
and more than 220 million points of labeled data. Figure 3
shows the distribution of the three classes used, namely
windows+doors, walls, and others. These categories can
be further subdivided in the future. Note that 85% of the
data consists of wall points, creating a significant imbal-
ance that can affect the performance of any trained model.

3.1 Post processing and preparing the data

To ensure the point cloud data is standardized, aligned,
and ready for neural network model training, we imple-
mented a series of pre-processing steps, as outlined below:

 Spatial Centering & Intensity Normalization: The
origin of each facade point cloud was moved to the
geometric center of its minimum bounding box. This
ensures consistency of the spatial positioning of all
walls and openings (windows and doors) facilitating
easier model interpretation. Light intensity was nor-
malized to avoid large values observed in the raw data.
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(a) Default feature map without radiometry features
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(b) Fine tuned feature map with added radiometry features

Figure 4. Comparison of fine tuned feature partition map for SPT.

To handle outliers in intensity values, we employed
the Robust Z-Score normalization method:

I — Median(7)

Lrobust = 0.6745 - MAD

ey
where [ is the raw intensity value, Median(/) is the
median intensity, and MAD is the Median Absolute
Deviation. This ensures that the intensity values are
scaled robustly, particularly across facade surfaces
and doesn’t skew the model training.

PCA-Based Alignment: For facade-specific data
preparation, Principal Component Analysis (PCA)
was applied to the wall points using scikit-learn to
establish a consistent reference axis [22]. Subse-
quently, point clouds representing windows and doors
were aligned to this PCA-derived axis to standardize
their orientations. This alignment step is crucial for
facade datasets collected without a common TLS ori-
entation, as it ensures uniformity, allowing models to
concentrate on geometric features such as coplanarity
without being influenced by variations in orientation.

Output Format: RGB color values were left un-
changed, as they can serve as additional radiometric
features for identifying facade components. The pre-
processed point clouds, with spatial centering, nor-
malized intensity, PCA alignment, and original RGB
values, were exported in standard h5 formats. This
approach ensures that the data is directly usable for
neural network training.

4 Deep Neural Networks applied to PCSS

PointNet++ was a groundbreaking model introduced
in 2017 to solve the Point Cloud Semantic Segmenta-
tion(PCSS) problem [5]. The algorithm pioneered the
hierarchical learning of both local and global features di-
rectly from unordered point clouds. Given its historical

significance, we used PointNet++ as a baseline to evalu-
ate the PCSS accuracy on our dataset. PointNet++ uses a
Multi Layer Perceptron (MLP) architecture and processes
point clouds hierarchically, using set abstraction imple-
mented by multiple MLP layers to capture local and global
features. However, it only uses the xyz coordinates for
feature learning, ignoring other informative attributes like
light intensity and RGB. When trained and tested on the
ORNOBEL dataset, the model performed poorly in cap-
turing spatial relationships for minority classes such as
windows and doors, highlighting the difficulty of dealing
in imbalanced classes.

We have implemented Superpoint Transformer (SPT)
neural network architecture [6], an advanced model which
uses additional feature sets and super point partitions to
improvise feature learning. This model draws inspira-
tion from the U-Net convolutional architecture [23], which
has been groundbreaking in 2D image segmentation. By
integrating transformer-based self-attention mechanisms,
which has seen breakthroughs in language understanding,
SPT effectively captures the spatial dependencies between
unordered points, while its U-Net-like encoder-decoder
structure allows for multi-scale feature learning. Addi-
tionally, its compact size, with fewer parameters, ensures
computational efficiency, making it an ideal choice for
dense point cloud segmentation of building envelopes.

4.1 Superpoints features

Superpoints are groups of points clustered together
based on their local geometric properties. The Super-
point Transformer outperforms PointNet++ by leveraging
a more sophisticated architecture inspired by U-Net and
superpoint graphs. Unlike PointNet++, SPT uses a combi-
nation of xyz coordinates, light intensity, and RGB values
to construct a rich, hierarchical feature map. These fea-
tures are used to construct a meaningful hierarchical parti-
tion with adjacency relationship with neighboring points.
Subsequently, SPT organizes the point clouds with feature
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maps into superpoints (i.e., clusters of points with adaptive
and shared local features) enabling efficient and structured
feature aggregation.

The transformer encoder-decoder architecture with self-
attention allows SPT to learn spatial dependencies between
points effectively, which is critical for capturing complex
facade openings and features. SPT integrates MLP layers
to extract point-wise features and project them onto higher
dimensions before applying attention. This combines the
strengths of both MLPs and transformers. Our fine-tuning
process involved customizing SPT to optimize its ability to
learn facade-specific features as shown in Figure 4. With
the appropriate calibrated parameters in SPT, classification
accuracy across all metrics was improved compared with
the PointNet++ baseline results, particularly for correctly
classifying minority classes.

4.2 Deep neural networks training

To establish a point of comparison for improvements, we
generated a baseline models using PointNet++. The orig-
inal PointNet++ model was trained without implementing
any sampling methods or dataset balancing, relying solely
on xyz coordinates for feature learning (no radiometry
features like intensity or RGB were used). The model per-
formed poorly across all classes due to the dataset’s inher-
ent imbalance. To address this, we used a combination of
sampling methods: weighted cross-entropy loss as a pas-
sive sampling method and downsampling majority class as
an active approach. While these techniques significantly
improved the model’s performance, the generalization to
non-downsampled wall points remained poor. This high-
lighted the limitations of addressing class imbalance solely
by downsampling a single class, which is impractical for
real-world applications.

The Superpoint Transformer model was initially trained
on the ORNOBEL dataset without fine-tuning or incorpo-
rating intensity and RGB features. Moreover, the SPT
was trained directly on the class-imbalanced dataset, pro-
viding a more robust and effective solution to the chal-
lenges posed by the dataset’s structure. The model per-
formed extremely well, yielding a significant boost over
the Pointnet++ model’s results. To effectively train our
neural networks, we employed cross-entropy loss func-
tions. Specifically, for the PointNet++ model, we applied
a weighted cross-entropy loss to explicitly handle class
imbalance within the dataset. For the SuperPoint Trans-
former model, the standard categorical cross-entropy loss
was sufficient enough.

Overall Accuracy: measures the ratio of correctly classi-
fied points across the entire dataset. While accuracy
was recorded, it is misleading for imbalanced datasets
as it disproportionately favors the majority class (wall
points in our case)
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Figure 5. Comparison of training metrics from SPT

mean Intersection over Union (mIoU): this metric pro-
vides a class-wise measure of segmentation accuracy.
This metric is particularly effective for semantic seg-
mentation, as it evaluates the overlap between pre-
dicted and ground-truth points for each class.

The SPT model was trained for up to 1000 epochs with
an early stopping criterion to prevent over-fitting. Point-
net++, on the other hand, was trained for 50 epochs. A
standard batch size of 32 was utilized for both models,
balancing computational efficiency and effective gradient
updates. Figure 5 shows the three different aforementioned
metrics during the training process of the SPT model for
baseline comparisons. It is noteworthy that overall accu-
racy quickly reaches a high value >80% largely due to the
bias towards wall points. Meanwhile, the mloU values
do not reach their maximum until the end of the training
phase.

5 Results and Discussion

The training and testing experiments were conducted on
a system equipped with an NVIDIA RTX 6000 Ada Gen-
eration GPU, Intel Xeon Gold 6442Y CPU, and 128 GB
of RAM. Training times varied depending on the model
complexity and number of epochs, with PointNet++ com-
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(a) Pointnet++ prediction on down-sampled wall points

(b) SPT prediction on actual points

Figure 6. Comparison of model predictions.

pleting in approximately 3 hours per run and Superpoint
Transformer taking around 2 hours per run. From our ex-
periments, we observed that well-represented classes with
planar geometries (such as walls) are correctly segmented
in most of the instances. Figure 6b shows, the segmen-
tation results for the Pointnet++ (left) and SPT (right).
The improved segmentation accuracy of SPT model re-
sulted from careful feature fine-tuning, where additional
point features (such as RGB, intensity, and elevation) were
integrated beyond the default set used in the original im-
plementation.

Note that, in general, the wall points (denoted in blue
color) are well identified in both models. However,
opening points (grey color) were more accurately seg-
mented using SPT. In the case of Pointnet++, such points
were not distinctly separated from the third class (green
color)which corresponded to other protrusions, such as
gutters or ground platforms. The testing error metrics
shown in Table 1 demonstrates that the SPT has a superior
performance for solving the PCSS problem for building
envelopes. This improved performance is primarily at-
tributed to the SPT’s attention-based architecture, which
effectively captures detailed spatial relationships and long-
range contextual features. Additionally, incorporating ra-
diometric information, such as RGB and intensity values,
enables richer feature representations, significantly im-
proving segmentation accuracy for facade elements like
windows and doors. It is important to note, however, that
RGB features do not inherently resolve class imbalance;
instead, the enhanced accuracy from radiometric features
improve overall model performance.

After the PCSS problem is solved, the digital twin
of the building envelope is created by finding the min-
imum bounding box of the different classes. Figure 7
shows the bounding box for each opening. Note that the
SPT model struggled with accurate predictions along the

Table 1. Testing error metrics on ORNOBEL Dataset

Metrics mIOU  OA%
Pointnet++ (downsampled) 93 97%
Superpoint Transformer 97.3  98.7%

boundaries of windows and doors, where the transition
between classes introduces ambiguities leading to parti-
tion errors that cannot be fully corrected with the cur-
rent model. This boundary defines the transition between
classes and lacks a distinct geometric or feature disconti-
nuities where two or more classes intersect. Table 2 com-
pares the dimensions of the digital twin extracted using
the SPT model versus the original one defined using the
Auto-CuBES algorithm. The opening are number from
1 to 8, going from left to right, and from bottom to top.
Note that the bottom openings show the largest errors,
while the top openings show a low height error and large
width error. Upon close inspection, the errors are mainly
due to outliers in the opening classes. One of the last
steps in Auto-CuBES involve removing outliers from each
identified cluster, drastically increasing its accuracy. The
SPT model, on the other hand, its very efficient at iden-
tifying the main points belonging to a particular cluster,
but cannot completely remove the outliers within a cluster.
This exemplifies the limitations of relying solely on a deep
learning model, and directs our research towards a more
robust PCSS solution that uses both neural networks and
unsupervised clustering techniques.

6 Conclusion and Future Work

In this work, we present ORNOBEL, a high density,
labeled 3D facade segmentation dataset specifically de-
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Figure 7. Bounding box applied to SPT results

Table 2. Comparison between digital twin dimen-

sions generated by SPT and Auto-CuBES

Open SPT (m) Auto-CuBES Error (mm)

Height Width Height Width Hght Wdth
1 2520 2211 2.186  1.947 334 264
2 2.141 2.134 1.945 1.864 196 27
3 2135 1.879 1.943  1.838 192 41
4 1.924  1.866 1.943  1.835 -19 31
5 1.968 1.954 1.956 1.856 12 98
6 1.946 1.940 1.945 1.854 1 86
7 1.960 1.886 1.944 1.843 16 43
8 1.964 1.886 1.952 1.854 16 43

signed for building exterior envelopes, addressing the lack
of labeled datasets for building retrofitting applications.
Our findings highlight the potential of 3D PCSS in gen-
erating precise Building Information Models (BIMs) for
retrofitting applications, particularly for designing and de-
ploying prefabricated overclad panels to enhance build-
ing energy efficiency. Based on the observations from
2D image-based facade segmentation domain [24, 2], we
believe that our 3D facade segmentation dataset will con-
tribute to the further development of 3D facade-oriented
methods for construction domain. Results from the deep
learning models tested show that a transformer-based ar-
chitecture has a good potential for solving the semantic
segmentation problem in dense building envelope point
clouds. However, we plan to extend our work by further
training on more state-of-the-art models in combination
with various sampling methods and clustering techniques
to further address our current limitations. For future work,
we aim to expand our dataset by including additional build-
ing scans with diverse architectural styles and materials,
removing PCA to generalize and address class boundary
limitations. Additionally, we will open-source our dataset
to address the lack of labeled resources in this domain,
fostering collaboration and innovation in 3D facade seg-

1431

mentation. Future exploration will also involve developing
methods for faster and improved real-time segmentation
capabilities for on-site retrofitting applications through ac-
celerated pipelines.
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