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Abstract -
Mobile Laser Scanner (MLS) technology enables the ac-

quisition of high-precision three-dimensional lidar point
cloud data of roadside infrastructure elements, including
traffic signs and street poles. This research presents an
innovative and computationally efficient algorithm for the
extraction of pole-shaped objects from MLS point clouds.
The methodology addresses the computational challenges
associated with large-scale point cloud processing through
a trajectory-based segmentation and ground point filtering.
The algorithm implements geometric descriptors, specifically
linearity and verticality to identify potential pole structures.
Subsequently, the statistical outlier removal (SOR) filter is
applied to refine the candidate pole detection results. The fi-
nal classification of true pole objects is achieved through the
application of ground clearance criteria. The algorithm’s
effectiveness was validated through empirical testing across
three distinct urban and suburban environments, utilizing
data acquired from two different MLS systems. The experi-
mental results demonstrated successful performance metrics,
achieving mean precision and recall rates of 97.21.
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1 Introduction

Poles along roads are really important for new technolo-
gies like self-driving cars and creating 3D maps [1]. By
knowing exactly where these poles are located, we can bet-
ter understand road conditions and improve how we design
and manage transportation infrastructure [2]. While tradi-
tional inspection methods involving manual ground-based
assessment are resource-intensive and laborious, there is
a critical need for expedited, fully automated inspection
protocols for roadside infrastructure evaluation [3].

MLS systems have emerged as powerful tools in this
field, offering significant advantages over other remote
sensing technologies [2]. Unlike optical imaging, which
struggles with illumination variations, laser scanning sys-
tems can measure distance information directly without
being adversely affected by ambient lighting or shadows
[4] , [5]. These systems generate three-dimensional spa-
tial information of object surfaces, eliminating the time-
intensive computational processes typically required for
deriving 3D coordinates from imagery [6].

Previous research has explored various techniques for
extracting pole-shaped objects from point clouds, includ-
ing voxel-based procedures and adaptive radius cylinder
models [7]. However, existing approaches often face limi-
tations such as dependence on complex voxel transforma-
tions, suboptimal thresholding parameters, and require-
ments for extensive training datasets and computational
resources.

In response to these challenges, the research proposes
a novel and computationally efficient algorithm for pole-
shaped object extraction from mobile laser scanning point
clouds. The methodology introduces geometric descrip-
tors for pole detection while maintaining computational
efficiency through systematic data segmentation. By ad-
dressing the limitations of existing approaches, this re-
search aims to advance automated infrastructure monitor-
ing and environmental mapping technologies.

2 Proposed Method
2.1 Pre-processing

This subsection addresses the critical challenge of man-
aging the vast volume of lidar point cloud data. It empha-
sizes the importance of effectively removing both noise
and ground points, which is essential for reducing the over-
all data size and ensuring that only relevant information
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is retained. This process plays a key role in minimiz-
ing unnecessary data, thereby enhancing the efficiency of
subsequent data processing and analysis.

2.1.1 Sectioning

MLS systems leverages trajectory data to efficiently seg-
ment point cloud information by recording the vehicle’s
precise location throughout the scanning process. This
trajectory data, which is inherently aligned with the point
cloud coordinate system, allows for seamless segmentation
of the scanned environment into uniform sections without
requiring complex georeferencing. By dividing the trajec-
tory into fixed-length segments—in this case, 90m—the
corresponding point cloud data is simultaneously parti-
tioned into equivalent sections, creating a systematic ap-
proach to processing large spatial datasets [2]. The pri-
mary advantage of this method lies in its ability to trans-
form continuous, complex point cloud information into
manageable, discrete units, significantly reducing com-
putational complexity and enabling more focused spatial
analysis. Since the trajectory data is substantially smaller
in volume compared to the lidar point cloud data, this seg-
mentation approach not only simplifies data processing but
also improves overall implementation efficiency, making
it an elegant solution for handling extensive MLS datasets.
Figure 1-a illustrates the trajectory data overlaid on the col-
lected LiDAR point clouds. It is important to note that an
elevation shift is required due to the absence of elevation
data in the trajectory. As shown in Figure 1-b, the section-
ing of the collected data has been appropriately performed,
with each section represented in a distinct color.

subcaption
xcolor

2.1.2 Noisy Points Removal

Noisy points (Figure 2) in MLS point clouds can arise
from various sources, such as sensor imperfections, envi-
ronmental noise, and surface reflectivity variations. These
points typically exhibit abnormal elevations or low point
density, which makes them distinguishable from the rest
of the point cloud. The SOR method is a robust technique
used to detect and eliminate these outliers by analyzing
the statistical distribution of neighboring points [8].

The SOR algorithm operates by calculating the mean
distance from each point to its neighboring points within a
specified radius. In this study, the number of nearest neigh-
bors (𝑁) is set to 10. For each point in the point cloud,
the mean distance to its 10 nearest neighbors is computed
(Obtained based on trial and error). These mean distances
are then used to define a threshold, which is typically
based on the global mean and standard deviation of the
mean distances across the entire dataset. Points that have
a mean distance significantly larger than the average (i.e.,

those that fall outside a certain multiple of the standard
deviation) are considered statistical outliers. These out-
liers are likely to be noisy or erroneous, as they do not
align with the expected spatial distribution of neighboring
points. The general formula for the SOR algorithm can be
expressed as [8]:

𝐷𝑖 =
1
𝑁

𝑁∑︁
𝑗=1

|𝑃𝑖 − 𝑃 𝑗 | (1)

where 𝐷𝑖 is the mean distance from point 𝑃𝑖 to its
nearest neighbors 𝑃 𝑗 , and 𝑁 is the number of neighbors (in
this case, 10). For each point 𝑃𝑖 , the algorithm calculates
the mean distance to its neighbors and compares it to the
overall distribution of mean distances in the dataset. Points
with a mean distance greater than a threshold defined as
𝜇+𝑘𝜎 (where 𝜇 is the mean and𝜎 is the standard deviation
of all mean distances, and 𝑘 is a defined constant) are
flagged as outliers.

xcolor

2.1.3 Ground Points Removal

The Cloth Simulation Filter (CSF) method [9] offers
an innovative approach to ground point removal in MLS
point clouds, addressing the critical challenge of data vol-
ume reduction for efficient processing and analysis. By
simulating a cloth-like surface that drapes over the point
cloud, the algorithm mimics gravitational effects, effec-
tively classifying points as ground or non-ground based
on their position relative to this simulated surface. This
method demonstrates remarkable versatility, capable of
handling diverse terrains including both steep and flat ar-
eas, making it particularly valuable for large-scale point
cloud datasets.

The CSF algorithm’s effectiveness hinges on two key
parameters: grid size and classification threshold. The
grid size, which determines the resolution of the cloth
mesh, plays a crucial role in capturing terrain features ac-
curately—in this study, a 0.31m grid size was selected to
optimize detail and efficiency. By carefully tuning these
parameters, the method can dramatically reduce point
cloud volume, as evidenced by its ability to remove approx-
imately 4.5 million ground points from a 5-million-point
dataset in just 3 seconds. This computational efficiency,
combined with the algorithm’s ability to model complex
terrain variations, makes the CSF method a powerful tool
for preprocessing lidar point cloud data across various en-
vironmental contexts.

2.2 Detecting Candidate Poles

This step aims to identify pole-shaped objects among
the remaining point clouds, which include various objects
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(a) Displaying the trajectory data on the LiDAR point clouds
(an elevation shift is needed).

(b) Created sections which partition the point cloud for efficient
processing.

Figure 1. (a) Trajectory data overlaid on the LiDAR point clouds, requiring an elevation shift for alignment, and
(b) resulting sections dividing the data into manageable units.

Figure 2. Displaying the noisy points.

that lack meaningful information in isolation. By ana-
lyzing the surrounding neighborhood points, we aim to
assign meaningful descriptors to each point. For instance,
we know that power lines typically exhibit thin, lengthy lin-
ear structures, while objects such as poles tend to have a
long, vertical shape. To distinguish between these types of
objects, rule-based descriptors of linearity and verticality
are employed. These two geometric features—verticality
and linearity—are particularly effective for characterizing
poles. The descriptors are quantified using the eigenvalues
obtained from the Principal Component Analysis (PCA)

procedure, which captures the directional properties of the
point cloud and provides a means to differentiate between
vertical and linear structures.

These descriptors are computed for each point in the
filtered point cloud dataset after ground point removal.
Let 𝑃(𝑖) represent the set of points, where 𝑖 is the index
of each point. The descriptors are computed based on
eigenvalues derived from PCA of the covariance matrix.

2.2.1 Verticality and Linearity Descriptors

The verticality descriptor 𝑉 (𝑖) is defined as [2]:

𝑉 (𝑖) = 𝜆1
𝜆1 + 𝜆2 + 𝜆3

(2)

where 𝜆1, 𝜆2, 𝜆3 are the eigenvalues of the covariance
matrix, and 𝜆1 is associated with the dominant vertical
direction of the point cloud.

The linearity descriptor 𝐿 (𝑖) is computed as:

𝐿 (𝑖) = 𝜆2
𝜆1 + 𝜆2 + 𝜆3

(3)

where 𝜆2 corresponds to the direction of the linearity of
the point cloud.

2.2.2 Neighborhood Selection and Thresholding

For each point index 𝑖, the neighborhood points are
selected based on a spherical neighborhood with radius
𝑟 = 0.9 meters. This can be expressed as:

𝑁 (𝑖) = {𝑃( 𝑗) | ∥𝑃(𝑖) − 𝑃( 𝑗)∥ ≤ 𝑟} (4)

where 𝑁 (𝑖) is the set of neighboring points for point 𝑃(𝑖),
and 𝑟 is the radius for point selection.
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2.3 DBSCAN-based Point Cloud Clustering

To detect pole-shaped objects in a point cloud us-
ing an unsupervised approach, we employ the DBSCAN
(Density-Based Spatial Clustering of Applications with
Noise) algorithm, which clusters points based on their
geometric characteristics [10]. The input to DBSCAN
consists of feature vectors for each point, which include
the 3D coordinates as well as additional descriptors, such
as linearity and verticality. Each point 𝑃(𝑖) is represented
by a feature vector:

x(𝑖) = {𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , linearity𝑖 , verticality𝑖} (5)

where 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 denote the 3D coordinates of point 𝑃(𝑖),
and linearity𝑖 and verticality𝑖 are the calculated descrip-
tors based on the local neighborhood and PCA. These
descriptors serve as indicators of whether a point is part
of a pole-like object or not.

The DBSCAN algorithm requires two parameters: the
maximum distance 𝜖 and the minimum number of points
MinPts. The distance threshold 𝜖 determines the maxi-
mum allowed distance between two points for them to be
considered as neighbors, and MinPts defines the minimum
number of points required in a neighborhood for a point to
be classified as a core point. The neighborhood of a point
𝑃(𝑖) is defined as the set of points 𝑁𝜖 (𝑖) within a distance
of 𝜖 :

𝑁𝜖 (𝑖) = {𝑃( 𝑗) | ∥x(𝑖) − x( 𝑗)∥ ≤ 𝜖} (6)

where ∥x(𝑖) − x( 𝑗)∥ is the Euclidean distance between
points 𝑃(𝑖) and 𝑃( 𝑗). If the number of points within this
neighborhood is greater than or equal to MinPts, then 𝑃(𝑖)
is considered a core point, which is a point around which
a cluster can form. This is mathematically represented as:

|𝑁𝜖 (𝑖) | ≥ MinPts (7)

Points that lie within the neighborhood of a core point
but do not themselves have enough points to form a cluster
are classified as border points. Border points are included
in the same cluster as the core points they are associated
with. Any point that is not a core point or a border point
is classified as noise.

DBSCAN assigns each core point and its corresponding
neighborhood to a cluster, and the final output is a set
of clusters 𝐶1, 𝐶2, . . . , 𝐶𝑘 , where each cluster contains
densely connected points. Points that are classified as
noise are not included in any cluster. The overall output
of the DBSCAN algorithm is given by:

DBSCAN(𝜖,MinPts) = {𝐶1, 𝐶2, . . . , 𝐶𝑘} (8)

where 𝐶1, 𝐶2, . . . , 𝐶𝑘 are the detected clusters corre-
sponding to potential pole-shaped objects. This clustering

approach enables the identification of pole-like structures
based on their geometric properties without the need for
labeled data.

3 Experiment and Results
3.1 Study Area and Results

The evaluation of the proposed algorithm is based
on datasets from diverse environments, each presenting
unique challenges for accurate analysis. The urban region
in the USA, with its high object density and reflective
surfaces, complicates the distinction of pole-shaped struc-
tures due to overlapping vertical objects, occlusions, and
varying point densities. The suburban USA region, while
less dense, still presents challenges with trees, power lines,
and scattered buildings, requiring the algorithm to manage
a large dataset with 45 million points and efficiently clas-
sify pole-shaped objects. The suburban region in China
adds complexity due to geographical differences, sensor
calibration variations, and environmental factors like veg-
etation and local infrastructure. Across all datasets, chal-
lenges include point density variations, occlusions, en-
vironmental factors, and geographical variability, which
demand a robust, adaptive algorithm.

The algorithm demonstrated strong performance (Fig-
ure 3) across the test regions, particularly in the suburban
USA area where it successfully detected 33,490 pole points
with only 796 points undetected and 953 false positives,
achieving approximately 97 percent recall accuracy (Ta-
ble 1). In urban environments, additional challenges arose
from phone lines attached to poles and traffic signs, which
occasionally led to misclassification. While the algorithm
showed reduced accuracy in detecting transmission line
pylons and poles with additional equipment such as trans-
formers, its adaptability to various environmental condi-
tions proved effective. The presence of dense trees, cables,
and varied building types added complexity to the detec-
tion process, yet the algorithm maintained robust perfor-
mance across different regions, efficiently processing large
lidar datasets and adapting to diverse urban and suburban
landscapes.

4 Discussion
4.1 Computation System

The proposed method presents significant advantages
over previous approaches, particularly in terms of sys-
tem implementation, runtime efficiency, input data re-
quirements, and overall efficiency. Unlike many prior
studies that rely on expensive cloud computing systems,
the method was executed on an affordable laptop featur-
ing an Intel Core i5 processor, 12 GB of RAM, and an
Nvidia GeForce graphics card. This economical setup still
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(a) Suburban USA

(b) Suburban China

(c) Urban USA

Figure 3. Visualising the output of the algorithm (the extracted poles are displayed in red color): (a) Suburban
USA, (b) Suburban China, (c) Urban USA.
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Table 1. Performance metrics of the proposed algorithm across three datasets, with average values.
Dataset Length (m) Points (million) Precision (%) Recall (%) F1 Score (%) Time (s)
Suburban USA 550 45 97.68 97.23 97.45 104
Suburban China 500 19 97.00 95.84 96.42 93
Urban USA 200 15 96.96 94.97 95.95 115
Average – – 97.21 96.01 96.61 –

achieved satisfactory performance, making it accessible
for practitioners without high-end infrastructure, and par-
ticularly suitable for resource-constrained environments
like field-based applications or small-scale projects. Ad-
ditionally, the runtime efficiency of the method is a key
strength, processing data in approximately 312 seconds,
which is significantly faster than other methods—up to 20
times faster in some cases.

4.2 Datasets

In terms of input data, the method has the advantage of
relying solely on 3D lidar point clouds and trajectory data,
simplifying the data acquisition process compared to other
methods that require additional data sources such as scan-
lines or labeled training datasets. This makes the algorithm
more flexible and easier to implement in situations where
such data is difficult or costly to obtain. The method’s
versatility is further demonstrated by its ability to handle
data from multiple MLS platforms and operate effectively
in both urban and suburban environments. This adaptabil-
ity enhances the algorithm’s robustness and broadens its
applicability across diverse geographic locations and point
cloud characteristics. Overall, the proposed algorithm out-
performs existing methods by providing high performance
on affordable hardware, efficient processing, minimal data
requirements, and flexibility across different platforms,
making it a practical and valuable tool for pole detection
in lidar point clouds.

4.3 Parameter Selection and Optimization

The effectiveness of the proposed algorithm relies
on several key parameters, whose values were carefully
selected to optimize performance across diverse MLS
datasets. While the primary parameters—segmentation
length (90 m), SOR nearest neighbors (𝑁 = 10), and
CSF grid size (0.31 m)—were justified in the methodol-
ogy, additional parameters such as the spherical neighbor-
hood radius (𝑟 = 0.9 m), DBSCAN clustering parameters
(𝜖 = 0.5 m, MinPts = 10), and ground clearance threshold
(0.5 m) also warrant discussion to elucidate their optimal-
ity.

The spherical neighborhood radius of 0.9 meters, used
for computing verticality and linearity descriptors, was
chosen to encapsulate the local geometry of pole-shaped
objects while minimizing interference from adjacent struc-

tures. Given that poles in the datasets typically have di-
ameters of 0.2–0.5 meters, a 0.9-meter radius ensures suf-
ficient point inclusion for robust PCA-based eigenvalue
computation, capturing vertical extents of 2–3 meters.
Empirical trials showed that smaller radii (e.g., 0.5 m)
yielded unstable descriptors in sparse regions, whereas
larger radii (e.g., 1.5 m) incorporated noise from nearby
objects, reducing specificity. This value proved effective
across urban and suburban environments, balancing sen-
sitivity and precision.

For DBSCAN clustering, the maximum distance 𝜖 =

0.5 m and minimum points MinPts = 10 were selected
to group points into coherent pole structures. The 0.5-
meter𝜖 aligns with the physical scale of poles and the
point density of the MLS data (100–1000 points/m2), en-
suring that points along a single pole are clustered without
merging with unrelated objects spaced further apart. A
smaller 𝜖 (e.g., 0.2 m) fragmented poles, while a larger
value (e.g., 1.0 m) over-clustered with non-pole features.
Similarly,MinPts = 10 reflects the expected point count
within a pole’s neighborhood, filtering out noise while re-
taining valid clusters. This combination was iteratively
refined to maximize recall and precision, as evidenced by
the 97.21% average precision reported in Table 1.

The ground clearance threshold of 0.5 meters, applied
as a final classification criterion, distinguishes pole bases
from ground-level clutter. This value accommodates ter-
rain variations and sensor height offsets, ensuring that
poles are correctly identified above residual ground points
post-CSF filtering. Testing revealed that a lower threshold
(e.g., 0.2 m) misclassified low vegetation, while a higher
threshold (e.g., 1.0 m) missed valid pole bases in uneven
areas. The 0.5-meter criterion proved robust across the
datasets, enhancing the algorithm’s adaptability to diverse
landscapes.

These parameter choices were informed by empirical
optimization, practical constraints (e.g., computational ef-
ficiency on standard hardware), and the physical char-
acteristics of pole-shaped objects in MLS point clouds.
While the selected values yielded high performance (av-
erage F1 score of 96.61%), future work could explore
adaptive parameter tuning based on local point density or
environmental context to further enhance generalizability.
Nonetheless, the current settings provide a practical and
effective baseline for pole detection, as demonstrated by
the experimental results.
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4.4 Comparison with Baseline Methods

The proposed approach, leveraging trajectory-based
segmentation and geometric descriptors, is designed to
offer improved efficiency over existing techniques for
pole-shaped object extraction from MLS point clouds.
While Section 1 highlights limitations of baseline meth-
ods—such as voxel-based pole extraction techniques and
adaptive radius cylinder models—this subsection provides
a qualitative comparison to contextualize our method’s ad-
vantages.

Unlike voxel-based methods, which rely on computa-
tionally intensive grid construction and transformations,
our approach uses trajectory data to segment point clouds
directly, simplifying preprocessing and reducing computa-
tional overhead. Similarly, adaptive radius cylinder mod-
els (e.g.,[6]) often require iterative optimization and ex-
tensive parameter tuning, whereas our method employs
straightforward geometric descriptors (linearity and ver-
ticality) to achieve rapid pole detection. A key strength
of our algorithm is its independence from labeled training
data, a common requirement in many baseline techniques
that increases preparation time and resource demands. By
contrast, our reliance on raw 3D point clouds and trajectory
information enables efficient processing on standard hard-
ware, as demonstrated across diverse urban and suburban
datasets (Section 2).

While baseline methods may offer robustness in specific
scenarios, such as handling complex occlusions or varying
object densities, they typically incur higher computational
costs and preparatory complexity. Our approach prior-
itizes speed and simplicity, achieving high performance
(e.g., 97.21% average precision, Table 1 without sacri-
ficing accuracy. This efficiency is particularly valuable
for real-time or resource-constrained applications, distin-
guishing our method from existing techniques that often
trade off speed for additional data dependencies or process-
ing steps. Future work could explore quantitative bench-
marks against these baselines to further validate these ad-
vantages, though the current results underscore the practi-
cal benefits of our streamlined design.

4.5 Analysis of Misclassified Cases

While the proposed algorithm demonstrated robust per-
formance across diverse datasets, achieving an average
precision of 97.21% and recall of 96.01% Table 1, a small
number of misclassified cases warrant critical discussion
to understand limitations and guide future improvements.
Notably, the algorithm missed two pole-shaped objects in
the experimental evaluation, as observed in the suburban
USA dataset (Section 3.1), where 796 points were unde-
tected out of 33,490 true pole points.

Several factors may contribute to these misses. First,

occlusion by dense vegetation or overlapping infrastruc-
ture (e.g., power lines or traffic signs) likely obscured the
geometric signatures of these poles. In urban and suburban
environments, poles are often situated near trees or cables,
which can disrupt the continuity of point cloud data, reduc-
ing the effectiveness of linearity and verticality descrip-
tors (Section 2.2). For instance, a pole partially occluded
by foliage may exhibit insufficient vertical point density
within the 0.9 m spherical neighborhood, failing to meet
the DBSCAN clustering criteria (𝜖 = 0.5 m, MinPts = 10).
Second, poles with non-standard configurations—such as
those with attached equipment (e.g., transformers) or ir-
regular bases—may deviate from the expected geometric
profile, leading to their exclusion during the ground clear-
ance (0.5 m) or statistical outlier removal stages (Section
2.1.2). The suburban USA dataset, with its mix of trees,
power lines, and varied pole designs, presented such chal-
lenges, as noted in Section 3.1.

These misclassifications have implications for the al-
gorithm’s applicability. In scenarios requiring exhaustive
pole detection (e.g., autonomous navigation), missing even
a small fraction of poles could impact reliability. However,
the low false negative rate (e.g., 796 undetected points ver-
sus 33,490 detected) suggests that the algorithm remains
highly effective for most practical purposes, such as infras-
tructure mapping, where near-complete detection suffices.
The trade-off between sensitivity and specificity is evident
here: stricter geometric and clustering criteria enhance
precision (97.21%) by rejecting ambiguous cases but may
overlook edge cases like the two missed poles.

To address these limitations, future enhancements could
include adaptive neighborhood sizing based on local point
density to better handle occlusions, or the integration of
contextual features (e.g., pole-top equipment recognition)
to improve detection of non-standard poles. Additionally,
incorporating multi-pass clustering or post-processing to
recover missed candidates could mitigate false negatives,
though at the cost of increased computational complexity.
These insights, derived from analyzing the misclassified
cases, underscore the algorithm’s strengths in typical sce-
narios while highlighting areas for refinement in challeng-
ing environments.

5 Conclusion and Future Works
The paper introduces an innovative algorithm for ex-

tracting pole-shaped objects from lidar point clouds, ad-
dressing the challenges of large-volume spatial data pro-
cessing in urban and suburban environments. By system-
atically partitioning point cloud data and employing ge-
ometric features like verticality and linearity, the method
efficiently identifies and clusters pole-like objects. The
algorithm’s robustness is demonstrated through extensive
testing on complex datasets totaling 1.3 kilometers and 80
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million points, achieving an impressive average F1 score
of 96.61 percent. Its key advantages include simplicity
of implementation, rapid extraction time, independence
from training data, and compatibility with various MLS
systems. While the results are promising, the authors sug-
gest further validation across different lidar platforms such
as airborne or terrestrial laser scanners to comprehensively
assess the algorithm’s adaptability and performance in di-
verse environmental conditions.
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