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Abstract 

Vision-based indoor positioning approaches are 

increasingly gaining attention due to their cost-

effectiveness and scalability. The core principle of 

vision-based indoor positioning is to identify the most 

visually similar space to the reference space images. A 

major challenge in previous vision-based indoor 

positioning methods arises from the need for large 

annotated datasets to ensure robust model 

performance, necessitating coverage of space images 

from various angles and points of view. To address 

this limitation, we propose a method that applies 

feature matching to 360-degree images, enabling 

indoor positioning with just a single reference image 

per space. This eliminates the need for multiple 

reference images by preprocessing the input image 

through feature-descriptor-based alignment and 

cube-map projection, allowing the image to be 

adjusted to better match the position and shape of the 

reference image. Experiments conducted on six 

different floor plans achieved an accuracy of 72.57% 

using only one reference image, confirming the 

feasibility and efficiency of this lightweight approach 

to indoor positioning. 
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1 Introduction 

Unlike outdoor positioning often relies on global 

positioning system (GPS) [1], indoor environments 

require different approaches because GPS signals cannot 

be received. The most common indoor positioning 

methods are signal-based techniques such as Wi-Fi [2], 

ultra-wideband (UWB) [3], and radio frequency 

identification (RFID) [4], which typically rely on 

triangulation methods and thereby offer robust 

performance. However, these techniques can be heavily 

influenced by indoor objects, such as furniture and walls, 

that interfere with signal propagation. Moreover, they 

require the installation of dedicated equipment, which 

can limit their applicability. In these contexts, vision-

based indoor positioning methods present a more 

intuitive and robust alternative than signal-based 

methods [5]. 

Indoor positioning research based on visual 

information often involves extracting features from 

images and then determining proximity to predefined 

reference points [6]. Recent advances in machine 

learning and deep learning have enabled systems to 

automatically identify salient features from video frames, 

which can subsequently be used to estimate a user’s 

location relative to these reference points. By harnessing 

visual cues, such systems can potentially overcome the 

limitations of wireless signal-based approaches, offering 

finer spatial resolution and rich contextual information 

about the surrounding environment. 

Despite the advantages offered by vision-based 

indoor positioning methods, several challenges remain. 

A major issue is the heavy dependence on large, labeled 

image datasets; as the number of positioning reference 

points increases, so does the need for more extensive data 

collection. Another concern is the potential confusion 

arising in visually similar spaces [7]. Even in the same 

location, images can vary significantly depending on the 

camera’s extrinsic parameters, making it difficult to 

distinguish between different areas that share analogous 

visual features. Therefore, to maintain the benefits of 

image-based indoor positioning while overcoming these 

challenges, methods are needed that can operate 

effectively with fewer images and reduce reliance on 

specific camera parameters. 

In this paper, we propose a one-shot indoor 

positioning method for residential buildings that 

leverages 360-degree images. Because many residential 

buildings repeat the same floor plan on every floor, they 

offer an environment well-suited for vision-based indoor 

positioning. To address the conventional reliance on 

large-scale datasets, we advocate the use of 360-degree 

images instead of standard photographs. Compared to 

conventional images, 360-degree images exhibit lower 

dependence on camera angles and positions, and they can 

be manipulated through projection to highlight specific 

visual information [8]. Building on these advantages, we 
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prepare a single reference image for each room as 

training data and use a corresponding query image to 

determine the user’s current location by comparing their 

visual similarity. As part of this process, we employ 

feature extraction to adjust the orientation of the 360-

degree images. We then perform cube-map projections 

on the aligned images, segmenting them so that each 

direction can be compared directly. Through this 

approach, robust indoor positioning is achievable with 

only one representative 360-degree image per room.  

2 Related Studies 

2.1 Image-based Indoor Positioning System 

Image-based positioning offers the advantage of 

leveraging dense visual information with minimal 

equipment while providing intuitive insights into spatial 

relationships. Traditionally, such methods have relied on 

feature-based techniques like the Scale-Invariant Feature 

Transform (SIFT) or Oriented FAST and Rotated BRIEF 

(ORB) [9] for keypoint detection and matching. By 

correlating extracted features with reference images or 

pre-built maps, researchers have demonstrated accurate 

localization even in the most intricate, multi-room 

settings. Concurrently, recent advances in neural network 

architectures have led to the widespread development of 

similarity-based methods [7]. Although these approaches 

share the overarching goal of precise localization, they 

primarily differ in how they extract and represent features 

from given images. 

Despite their promise, these methods often require 

large-scale image datasets and carefully tuned parameters 

to ensure robustness under varying conditions. Keypoint-

descriptor-based methods (e.g., SIFT, ORB) circumvent 

extensive training procedures, but tend to be highly 

sensitive to environmental changes in lighting or 

perspective [10]. Consequently, additional processes, 

such as rigorous parameter tuning or ensemble modelling, 

are often recommended to improve reliability. Moreover, 

in tall buildings where multiple floors replicate near-

identical room layouts, distinguishing among different 

spaces becomes increasingly problematic. This issue is 

exacerbated by the limited field of view (FoV) in 

conventional images, which can capture only a fraction 

of the environment and thus yield inconsistent results 

when camera angles differ.  

To overcome these challenges, 360-degree imaging 

has gained momentum as an alternative. By capturing the 

entire environment from a single vantage point, such 

images minimize the need for multiple photographs taken 

at various angles or distances [11]. Not only does this 

broader coverage enhance feature extraction, but it also 

simplifies the alignment process during positioning. 

Furthermore, positioning methods that employ scene 

understanding of 360-degree photos through 

segmentation-based techniques have also been 

introduced [12,13]. However, deep learning-based 

methods, particularly those leveraging convolutional 

neural networks and other advanced architectures, 

demand vast amounts of training data to achieve robust 

performance. Generating labeled image datasets for 

every possible indoor environment can be both time-

consuming and cost-intensive, which is where few-shot 

learning becomes highly relevant.  

2.2 Few-shot Learning in Construction 

Few-shot learning techniques enable models to 

generalize from a limited number of examples [14], 

thereby reducing the reliance on large, labeled datasets. 

They encompass various approaches, including meta-

learning [14] and similarity-based methods [15], and 

provide a promising solution by requiring only minimal 

data per class. In the construction domain, where 

collecting extensive labeled datasets can be costly and 

labor-intensive [16], few-shot learning helps alleviate the 

burdens typically associated with vision-based 

monitoring techniques [17].  

In the context of indoor positioning, few-shot 

learning substantially decreases the need for exhaustive 

image capture and labeling in each room or space. By 

focusing on representative images or leveraging meta-

level patterns across different tasks, these approaches 

maintain high accuracy even in visually similar 

environments—a feature particularly advantageous in 

high-rise residential buildings with repeated floor plans. 

Through the integration of 360-degree imaging and few-

shot learning, it becomes possible to capture 

comprehensive spatial information while avoiding the 

data-intensive bottlenecks often encountered in deep 

learning methods. 

2.3 Research Gap 

In summary, two major challenges arise when 

implementing indoor positioning systems that rely 

primarily on visual information and image similarity [7]. 

One involves calibrating the camera’s extrinsic 

parameters [11], and the other concerns assembling the 

large dataset required to construct the model [8]. As a 

potential solution, the use of 360-degree images has been 

proposed in prior work. Within this approach, some 

studies focus on calibration, while others involve 

subdividing images to increase the available data. 

However, the former still requires a feasibility 

assessment for practical use, and the latter necessitates 

additional preprocessing, which restricts direct 

application under few-shot conditions.  

In this study, we combine the strengths of these prior 

methods to propose an indoor positioning technique that 
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functions with only a small number of images. Through 

feature matching, we correct the camera’s external 

parameters, and by employing CMP-based 360-degree 

images, we make full use of omnidirectional visual 

information. As a result, accurate positioning becomes 

possible even with minimal data, providing a novel 

approach to vision-based indoor localization.  

3 Research Proposal 

Our proposed method is divided into two primary 

steps (Figure 1). The first step is a preprocessing stage 

performed when the query image is provided. During this 

stage, we align the 360-degree image and, if necessary, 

apply inpainting to remove the photographer or other 

unintended objects. This process corrects for variations 

in camera angle and eliminates noise that could otherwise 

skew comparisons, thereby ensuring an equal basis for 

evaluating similarity. 

In the second step, we compare the corrected query 

image with each reference image. By applying a 

projection technique, we segment both the query image 

and the reference image into multiple directions, splitting 

them into six sections via cube-map projection (CMP), so 

that images corresponding to the same direction can be 

compared individually [8]. This approach addresses the 

distortions inherent in the equirectangular projection 

(ERP) format of 360-degree images, which can vary 

based on the camera’s position inside the space. We 

repeat these comparisons for all reference images in the 

indoor environment, and the final positioning result is 

determined by selecting the space with the highest 

average similarity score. Further details on each step of 

the process are provided in the following subsections. 

Figure 1. Overall flow of preprocessing on input image and similarity comparison with reference image 
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3.1 Preprocessing on Input Image 

 First, once the input photo is provided, serving as the 

query image, both the query image and the reference 

image undergo feature extraction using keypoint-

descriptor methods. In this study, we employ an 

ensemble model comprising ORB [9], BRISK [18], and 

AKAZE [19]. [20][10]We then measure the horizontal 

distance between the keypoint-pairs that yield the highest 

match scores. This distance is used to shift the input 

image so that it is aligned to face the same direction as 

the reference image.  

Next, if the image contains a human subject, it 

introduces noise that must be removed. We accomplish 

this by performing inpainting technique, which requires 

a segmentation mask to identify the person’s location. In 

this process, we employ semantic segmentation to 

generate the mask. Specifically, we use the BEiT model 

[21], pre-trained on the ADE20K dataset [22], for 

segmentation, and the LaMa model for inpainting [23]. 

3.2 Similarity Comparison 

After aligning the orientation of the input image and 

removing noisy objects, we compare the resulting image 

with a reference image to evaluate their similarity. In this 

study, we use a CMP approach for this comparison, 

aiming to compensate for the substantial distortions in 

ERP images that can occur even within the same space. 

In typical residential buildings, each room can be 

approximated as having a roughly cubic shape; therefore, 

once the reference image is properly adjusted, each CMP 

section captures a distinct wall in the room. This setup 

allows both the CMP-based reference image and the pre-

processed input image to be compared on a wall-by-wall 

basis. 

To quantify similarity between images, we employ a 

pretrained Siamese network that outputs a similarity 

score [24]. The final similarity score between one input 

photo and a reference image is the average of the scores 

obtained from the six CMP sections. Repeating this 

process for every reference image in each room, we 

identify the final location as the room whose reference 

image yields the highest average similarity. 

4 Experiment & Results 

4.1 Dataset Preparation and Setting for 

Experiment 

Performance experiments on the proposed method 

were conducted in residential buildings. Specifically, we 

selected six housing units, and categorized their spaces 

into eight areas: [“Bathroom”, “Bedroom”, “Living 

Room”, “Dress Room”, “Balcony”, “Utility Room”, 

“Unit Room”, “Kitchen”]. In each space, we captured 

360-degree images. When a single unit contained 

multiple spaces of the same type (e.g., multiple 

bathrooms or bedrooms), we labeled them numerically to 

distinguish them as separate spaces. As a result, we 

compiled 288 images across 11 spatial categories for our 

experimental dataset (Table 1). 

In addition, we prepared separate reference images 

for each room. To correct for potential distortions that 

could arise during the similarity-check process, these 

reference images were taken from the center of each 

room. Once converted via CMP, the resulting six images 

were oriented to provide frontal views of each wall in the 

space.  

Table 1. Photo distribution of each room in the test 

Dataset 

Balcony Dressroom Kitchen Livingroom 

18 20 30 30 

Bedroom Bathroom Unit Utility 

34 / 31 / 35 24 / 21 24 21 

 

4.2 Performance Check 

In our experiments, the primary parameters requiring 

careful configuration were the number of features used 

during the feature matching step and the FoV value 

applied in the CMP process. In this study, we limited the 

number of matched features to one and fixed the FoV at 

90, based on empirical findings that the performance 

gains from using a larger number of features were 

outweighed by the degradation caused by increased noise. 

Furthermore, for feature matching, we employed 

three representative keypoint descriptors (ORB, BRISK, 

and AKAZE) and ensemble model. Propose ensemble 

model selects the best descriptor on a per-match basis by 

choosing the one that yields the highest match score, 

thereby enhancing the overall reliability of the matching 

process. 

Based on the ensemble model, the highest 

performance among the tested descriptors was 72.57%, 

largely attributable to BRISK, which was the primary 

descriptor used in the ensemble (Table 2). Notably, 

previous studies employing similar approaches relied on 

AKAZE [11], suggesting that no single descriptor offers 

superior performance in all scenarios [10]. Instead, a 

composite approach like the ensemble appears to be more 

effective overall. 

A closer examination of the data reveals varying 

classification performance across different rooms (Figure 

2). Bedrooms 1, 2, and 3 were frequently misclassified 

due to their high degree of visual similarity, while spaces 
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with more distinctive features, such as balconies or 

dressing rooms, showed better performance. In contrast, 

although bathrooms displayed relatively favorable recall 

values, their precision scores dropped significantly. This 

was attributable to low feature-matching scores across all 

descriptors, which led to reduced overall similarity scores. 

One likely cause is the large mirror occupying one wall, 

which may have interfered with the feature-matching 

process. Future research should address this issue to 

further enhance system performance. 

Table 2. Average accuracy according to each 

descriptor 

Descriptor ORB BRISK AKAZE Ensemble 

Accuracy 69.44% 71.53% 68.40% 72.57% 

 

Figure 2. Confusion matrix of the ensemble model for each 

room 

4.3 Ablation Studies 

To evaluate how our proposed method, which utilizes 

feature matching for image alignment and CMP for 

image comparison, contributes to overall performance, 

we conducted an ablation study by selectively removing 

each of these components. First, (a) we measured 

accuracy using only the reference image and the input 

photo, without either feature matching or CMP, resulting 

in 9.13% accuracy. This is the result of the previous 

method based on a 360-degree image approach that relies 

solely on simple feature descriptors [11], excluding all 

the suggestions from this study. Second, (b) we 

performed feature matching for image alignment on the 

360-degree images but used the ERP images for the 

comparison step, yielding 8.14% accuracy. Third, (c) we 

omitted the feature matching step and used only CMP, 

reaching 8.56% accuracy (Table 3). 

Table 3. Performance changes according to 

application of suggestions 

 
(a) 

Without 

proposal 

(b) Only 

feature 

matching 

(c) Only 

CMP 

comparison 

(d) 

Proposed 

method 

Accuracy 9.13% 8.14% 8.56% 72.57% 

These results are significantly lower than the 72.57% 

accuracy achieved by (d) our complete method. 

Moreover, given that the dataset contains 11 classes, the 

near 9–10% performance suggests results approaching 

random chance, thereby underscoring the limited utility 

of each individual component on its own. Consequently, 

our findings indicate that the benefits of the proposed 

method manifest only when feature matching and CMP 

are applied in tandem. Furthermore, considering that 

existing studies typically rely on feature matching alone 

[11], the considerable distortion inherent in 360-degree 

images can introduce major complications, supporting 

the necessity of our combined approach for robust indoor 

positioning. 

5 Conclusion 

This study presents a 360-degree image-based indoor 

positioning method that can be applied in small, 

repetitive indoor spaces using a single reference image. 

Unlike conventional images, 360-degree images provide 

substantially more visual information, which can 

alleviate the demands for a large dataset. However, to 

address the potential distortion and noise inherent in 

these images, we propose a two-step approach 

comprising of a preprocessing phase and a comparison 

phase. The method achieved an accuracy of 72.56% 

using only a single image per room. This represents a 

significant improvement compared to traditional feature-

matching-based methods that are difficult to apply in 

practice [11], as confirmed by the ablation study. 

Furthermore, the performance is comparable to previous 

studies that required large amounts of training data [7], 

demonstrating that this study successfully achieved its 

goal of developing a practical model with minimal image 

input. 

The primary contribution of this work lies in 

proposing a practical indoor positioning system that 

requires only one 360-degree image per room, alleviating 

the burden of preparing a large dataset in previous vision-

based methods or the high cost of installing signal-based 

systems. Another key contribution of this study lies in the 

automated calibration approach by combining the use of 
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feature matching and an image similarity comparison 

technique. When image shifting via feature matching is 

integrated with CMP-based image similarity, we can 

achieve a level of performance suitable for practical use, 

even with only a single image per room. These benefits 

can also be extended to other studies requiring 

approximate location tracking, thus broadening the 

potential applications of our method. 

Nevertheless, future research should aim to further 

enhance positioning accuracy, particularly in spaces like 

bathrooms that exhibit lower performance. Additionally, 

although the proposed method demands substantial 

computational resources and processing time, we 

anticipate that subsequent optimization and module 

simplification in future work will help mitigate these 

limitations. 

6 Acknowledgement 

This work was supported by the Korea Agency for 

Infrastructure Technology Advancement (KAIA) grant, 

funded by the Ministry of Land, Infrastructure and 

Transport (No. RS-2024-00407028). 

References 

[1] A.S. Rao, M. Radanovic, Y. Liu, S. Hu, Y. Fang, K. 

Khoshelham, M. Palaniswami, T. Ngo, Real-time 

monitoring of construction sites: Sensors, methods, 

and applications, Automation in Construction 136 

(2022) 104099. 

https://doi.org/10.1016/j.autcon.2021.104099. 

[2] M. Abbas, M. Elhamshary, H. Rizk, M. Torki, M. 

Youssef, WiDeep: WiFi-based Accurate and Robust 

Indoor Localization System using Deep Learning, in: 

2019 IEEE International Conference on Pervasive 

Computing and Communications (PerCom, 2019: 

pp. 1–10. 

https://doi.org/10.1109/PERCOM.2019.8767421. 

[3] P. Dabove, V. Di Pietra, M. Piras, A.A. Jabbar, S.A. 

Kazim, Indoor positioning using Ultra-wide band 

(UWB) technologies: Positioning accuracies and 

sensors’ performances, in: 2018 IEEE/ION Position, 

Location and Navigation Symposium (PLANS), 

2018: pp. 175–184. 

https://doi.org/10.1109/PLANS.2018.8373379. 

[4] T. Sanpechuda, L. Kovavisaruch, A review of RFID 

localization: Applications and techniques, in: 2008 

5th International Conference on Electrical 

Engineering/Electronics, Computer, 

Telecommunications and Information Technology, 

2008: pp. 769–772. 

https://doi.org/10.1109/ECTICON.2008.4600544. 

[5] Y. Wei, B. Akinci, A vision and learning-based 

indoor localization and semantic mapping 

framework for facility operations and management, 

Automation in Construction 107 (2019) 102915. 

https://doi.org/10.1016/j.autcon.2019.102915. 

[6] P. Pascacio, S. Casteleyn, J. Torres-Sospedra, E.S. 

Lohan, J. Nurmi, Collaborative Indoor Positioning 

Systems: A Systematic Review, Sensors 21 (2021) 

1002. https://doi.org/10.3390/s21031002. 

[7] I. Ha, H. Kim, S. Park, H. Kim, Image retrieval 

using BIM and features from pretrained VGG 

network for indoor localization, Building and 

Environment 140 (2018) 23–31. 

https://doi.org/10.1016/j.buildenv.2018.05.026. 

[8] Y. Wei, B. Akinci, Panorama-to-model registration 

through integration of image retrieval and semantic 

reprojection, Automation in Construction 140 (2022) 

104356. 

https://doi.org/10.1016/j.autcon.2022.104356. 

[9] E. Rublee, V. Rabaud, K. Konolige, G. Bradski, 

ORB: An efficient alternative to SIFT or SURF, in: 

2011 International Conference on Computer Vision, 

2011: pp. 2564–2571. 

https://doi.org/10.1109/ICCV.2011.6126544. 

[10] S.A.K. Tareen, Z. Saleem, A comparative analysis 

of SIFT, SURF, KAZE, AKAZE, ORB, and BRISK, 

in: 2018 International Conference on Computing, 

Mathematics and Engineering Technologies 

(iCoMET), 2018: pp. 1–10. 

https://doi.org/10.1109/ICOMET.2018.8346440. 

[11] T. Yashiro, H. Hirayama, K. Sakamura, An Indoor 

Localization Service using 360 Degree Spherical 

Camera, in: 2020 IEEE 2nd Global Conference on 

Life Sciences and Technologies (LifeTech), 2020: 

pp. 17–18. 

https://doi.org/10.1109/LifeTech48969.2020.15706

17174. 

[12] H. Xu, Q. Zhao, Y. Ma, S. Wang, C. Yan, F. Dai, 

Free-Viewpoint Navigation of Indoor Scene with 

360° Field of View, Electronics 12 (2023) 1954. 

https://doi.org/10.3390/electronics12081954. 

[13] J. An, D.H. Lee, H.H. Cho, O.H. Jeong, Indoor 

Positioning System Using Smartphone and 360° 

Camera, in: 2021 IEEE International Conference on 

Smart Internet of Things (SmartIoT), 2021: pp. 342–

343. 

https://doi.org/10.1109/SmartIoT52359.2021.0006

2. 

[14] S. Thrun, L. Pratt, Learning to Learn, Springer 

Science & Business Media, 2012. 

[15] Z. Cui, Q. Wang, J. Guo, N. Lu, Few-shot 

classification of façade defects based on extensible 

classifier and contrastive learning, Automation in 

Construction 141 (2022) 104381. 

https://doi.org/10.1016/j.autcon.2022.104381. 

[16] D. Gil, G. Lee, Zero-shot monitoring of construction 

workers’ personal protective equipment based on 

42nd International Symposium on Automation and Robotics in Construction (ISARC 2025)

1512



image captioning, Automation in Construction 164 

(2024) 105470. 

https://doi.org/10.1016/j.autcon.2024.105470. 

[17] J. Kim, S. Chi, A few-shot learning approach for 

database-free vision-based monitoring on 

construction sites, Automation in Construction 124 

(2021) 103566. 

https://doi.org/10.1016/j.autcon.2021.103566. 

[18] S. Leutenegger, M. Chli, R.Y. Siegwart, BRISK: 

Binary Robust invariant scalable keypoints, in: 2011 

International Conference on Computer Vision, 2011: 

pp. 2548–2555. 

https://doi.org/10.1109/ICCV.2011.6126542. 

[19] P. Alcantarilla, J. Nuevo, A. Bartoli, Fast Explicit 

Diffusion for Accelerated Features in Nonlinear 

Scale Spaces, in: Procedings of the British Machine 

Vision Conference 2013, British Machine Vision 

Association, Bristol, 2013: p. 13.1-13.11. 

https://doi.org/10.5244/C.27.13. 

[20] D.G. Lowe, Distinctive Image Features from Scale-

Invariant Keypoints, International Journal of 

Computer Vision 60 (2004) 91–110. 

https://doi.org/10.1023/B:VISI.0000029664.99615.

94. 

[21] H. Bao, L. Dong, S. Piao, F. Wei, BEiT: BERT Pre-

Training of Image Transformers, (2022). 

https://doi.org/10.48550/arXiv.2106.08254. 

[22] B. Zhou, H. Zhao, X. Puig, T. Xiao, S. Fidler, A. 

Barriuso, A. Torralba, Semantic Understanding of 

Scenes through the ADE20K Dataset, (2018). 

https://doi.org/10.48550/arXiv.1608.05442. 

[23] R. Suvorov, E. Logacheva, A. Mashikhin, A. 

Remizova, A. Ashukha, A. Silvestrov, N. Kong, H. 

Goka, K. Park, V. Lempitsky, Resolution-robust 

Large Mask Inpainting with Fourier Convolutions, 

(2021). https://doi.org/10.48550/arXiv.2109.07161. 

[24] G. Koch, R. Zemel, R. Salakhutdinov, Siamese 

neural networks for one-shot image recognition, in: 

ICML Deep Learning Workshop, 2015. 

https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1

.pdf. 

 

42nd International Symposium on Automation and Robotics in Construction (ISARC 2025)

1513


