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Abstract 

3D human joint estimation is essential for enabling 

effective human-robot interaction in construction 

automation, facilitating precise monitoring of worker 

movements to enhance safety, ergonomics, and 

operational efficiency. Vision-based systems utilizing 

multi-camera setups offer diverse perspectives to 

address challenges such as occlusions, projection 

ambiguities, and sensor noise. However, these systems 

depend heavily on accurate camera calibration to 

align views and synchronize measurements. 

Traditional manual calibration methods are time-

consuming, labor-intensive, and prone to human 

error, making them unsuitable for dynamic 

construction sites where frequent camera 

repositioning is required due to shifting conditions 

and tasks. This study proposes a novel framework 

that leverages external marker detection for real-time, 

automated camera calibration, eliminating the need 

for manual intervention. This approach significantly 

reduces setup time, minimizes errors, and ensures 

reliable performance in rapidly changing 

environments. Furthermore, the framework 

integrates an Extended Kalman Filter (EKF) to fuse 

2D joint locations from multiple cameras, effectively 

handling sensor noise and the nonlinear nature of 

human motion. By combining marker-based 

calibration with EKF-based fusion, the proposed 

framework delivers a robust and automated solution 

for 3D human joint estimation, enhancing safety, 

efficiency, and adaptability in construction 

automation applications. 

 

Keywords – 3D Human Joint Estimation; Multi 

Camera System; Automated Camera Calibration; 

Extended Kalman Filter 

1 Introduction 

Construction automation has emerged as a 

transformative approach to improving efficiency, safety, 

and ergonomics on job sites. Central to this advancement 

is the ability to accurately recognize human activities and 

estimate 3D poses, enabling seamless interaction 

between workers and automated systems. Modern 

construction sites increasingly feature human-robot 

collaboration, where workers and autonomous machines 

must operate in close proximity to accomplish complex 

tasks. However, these environments present significant 

hazards, including heavy machinery, work at heights, 

uneven terrain, and dynamic interactions between 

workers and automated systems [1], [2], [3]. In such 

settings, precise monitoring of worker movements is 

essential not only for ensuring safe interactions but also 

for optimizing task coordination and preventing errors. 

By reconstructing human movements through 3D joint 

estimation, construction managers can identify unsafe 

behaviors, assess ergonomic risks, and refine workflow 

strategies. This capability enhances safety protocols, task 

efficiency, and human-robot collaboration, reducing the 

likelihood of injuries from improper posture, repetitive 

strain, or equipment misuse [4]. 

Various 3D joint estimation approaches leverage 

advanced sensing, filtering, and modeling techniques. 

Among these, vision-based methods are widely adopted, 

utilizing camera data to track joint positions in three 

dimensions. RGB-D and 3D cameras help overcome the 

dimensional limitations of 2D cameras by providing 

depth information [5], [6], [7]. However, such systems 

often struggle with resolution constraints and sensitivity 

to lighting variations [8], [9], [10]. Recent monocular 3D 

pose estimation techniques have advanced significantly 

by leveraging Convolutional Neural Networks (CNNs) to 

regress 3D joint locations from single RGB images [11]. 

These approaches have expanded the application of 

vision-based motion capture to unconstrained 
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environments, but real-world deployment remains 

challenging due to occlusion, motion blur, and variable 

lighting conditions, necessitating further improvements. 

While monocular methods offer promising results, 

they often struggle with depth ambiguities. Multi-camera 

setups address this limitation by capturing multiple 

viewpoints of a subject, enabling robust triangulation of 

joint positions. However, such setups require accurate 

camera calibration to ensure proper alignment across 

views. Once calibrated, their performance can be 

enhanced using data fusion techniques such as the 

Kalman Filter (KF) and Extended Kalman Filter (EKF) 

to mitigate sensor noise and missing data, while particle 

filters are particularly effective in handling nonlinearities 

and occlusions [12], [13], [14]. Additionally, deep 

learning-based approaches, including Recurrent Neural 

Networks (RNNs), Generative Adversarial Networks 

(GANs), and sequence-to-sequence models, further 

improve motion prediction and temporal consistency in 

pose estimation [15], [16], [17]. 

Despite these advancements, significant challenges 

remain, particularly in dynamic and complex 

environments like construction. A major limitation is the 

reliance on accurate camera calibration, which is 

essential for precise depth perception and spatial 

alignment. Misaligned views due to improper calibration 

compromise depth calculations, reducing 3D estimations 

accuracy. Traditional calibration methods, such as the 

Direct Linear Transformation and two-step approaches, 

provide high precision in estimating intrinsic and 

extrinsic camera parameters. However, they are manual, 

time-consuming, and best suited for controlled 

environments, making them impractical for dynamic and 

unpredictable construction settings [18], [19]. 

To address these limitations, researchers have 

explored alternative approaches. Active vision-based 

methods leverage controlled camera movements to 

simplify mathematical modeling, but their dependency 

on precise motion control makes them challenging to 

implement in real-world applications. Similarly, 

advancements in computational techniques, such as 

neural networks combined with global optimization 

algorithms, have shown promise for automated 

calibration. These methods effectively model nonlinear 

relationships in calibration, but their reliance on large 

training datasets, intensive computation, and careful 

initialization can limit their applicability in time-sensitive 

or resource-constrained settings [20], [21]. 

While these techniques perform well in controlled 

environments, they encounter significant challenges in 

dynamic settings where frequent recalibration is required. 

On construction sites, cameras must be regularly 

repositioned to accommodate shifting tasks, occlusions, 

changing lighting conditions, and complex human 

motion patterns. Manual recalibration in such scenarios 

is time-consuming and inefficient, emphasizing the need 

for a real-time, automated calibration system that can 

maintain accuracy without disrupting ongoing operations. 

In this study, we propose an automated calibration 

framework that integrates a real-time, self-updating 

multi-camera calibration process for 3D joint estimation. 

Unlike traditional methods, where camera calibration is 

performed separately before pose estimation, our 

framework simultaneously calibrates camera positions, 

orientations, and fields of view (FoV) while estimating 

3D joint positions, enhancing both efficiency and 

adaptability. To achieve this, we employ an EKF-based 

multi-view fusion approach, where 2D joint detections 

from multiple cameras are integrated to generate robust 

3D pose estimates, effectively reducing sensor noise and 

motion uncertainties. Additionally, we introduce an 

external marker-based calibration technique that 

automatically updates camera parameters throughout the 

estimation process, eliminating the need for manual 

recalibration, which is often time-consuming and prone 

to errors. This approach minimizes setup errors, enhances 

real-time adaptability, and ensures consistent calibration 

even in dynamic and complex applications such as 

construction automation.  

2 Methodology 

This study aims to simultaneously estimate the 3D 

joint positions of a human and automatically calibrate a 

multi-camera system. To achieve this, a state vector, 𝑋𝑡 

is defined at a given time 𝑡 representing all the unknown 

variables to be estimated: human 3D joint positions and 

camera parameters (position, orientation, and FoV).  

The 3D joint positions are denoted as 𝐻𝑡,𝑗, where 𝑗 ∈

{1, … 𝑛}, and 𝑛 represents the total number of joints in the 

human body. Each 𝐻𝑡,𝑗 specifies the global 3D 

coordinates of the 𝑗-th joint in a Cartesian coordinate 

system. The camera parameters are expressed as 𝐶𝑡,𝑖 , 

where 𝑖 ∈ {1, … 𝑚}, and 𝑚 denotes the total number of 

cameras. Each 𝐶𝑡,𝑖 includes both the extrinsic parameters 

(3D position and orientation) and intrinsic parameters 

(horizontal and vertical fields of view) of the 𝑖-th camera. 

The state vector, 𝑋𝑡 is defined as: 

𝑋𝑡 = [𝐻𝑡,1, 𝐻𝑡,2 ⋯ 𝐻𝑡,𝑛, 𝐶𝑡,1, 𝐶𝑡,2 ⋯ 𝐶𝑡,𝑚]
𝑇
 (1) 

Here, each joint position 𝐻𝑡,𝑗 is a 3D vector representing 

the global coordinates (𝑥ℎ,𝑗, 𝑦ℎ,𝑗 , 𝑧ℎ,𝑗) of the 𝑗-th joint: 

𝐻𝑡,𝑗 = [𝑥ℎ,𝑗 𝑦ℎ,𝑗 𝑧ℎ,𝑗]𝑇 (2) 

Similarly, the camera parameter 𝐶𝑡,𝑖  represents the 

3D position (𝑥𝑐,𝑖 , 𝑦𝑐,𝑖 , 𝑧𝑐,𝑖) , orientation defined by roll 

𝜑𝑐,𝑖, pitch 𝜑𝑐,𝑖 , yaw 𝜓𝑐,𝑖, as well as the horizontal (𝐹ℎ𝑐,𝑖
) 

and vertical (𝐹𝑣𝑐,𝑖
) FoV: 
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𝐶𝑡,𝑖 = [𝑥𝑐,𝑖 , 𝑦𝑐,𝑖 , 𝑧𝑐,𝑖 , 𝜑𝑐,𝑖 , 𝜑𝑐,𝑖 , 𝜓𝑐,𝑖 , 𝐹ℎ𝑐,𝑖
, 𝐹𝑣𝑐,𝑖

]
𝑇

 (3) 

This formulation serves as the foundation for 

simultaneously refining 3D joint positions and 

calibrating the multi-camera system. The proposed 

methodology, illustrated in Figure 1, comprises three 

main steps: 2D joint estimation, marker detection and 

alignment, and EKF-based integration. 2D joint 

estimation extracts pixel coordinates of human joints, 

while marker detection establishes a global reference 

frame through ArUco marker corners. These 

measurements feed into the EKF, which refines the state 

vector, 𝑋𝑡  to estimate 3D joint positions and camera 

parameters, ensuring precise alignment. The following 

sections provide a detailed explanation of each step. 

 

 
  

Figure 1. Overall framework 

2.1 2D Joint Estimation 

The performance of the 3D joint estimation largely 

depends on accurate 2D joint detection. This study 

employs MediaPipe’s Pose module; a deep learning-

based framework developed by Google for high-accuracy, 

real-time application [22]. It utilizes the lightweight 

BlazePose model, which features a detector-tracker 

architecture that reduces latency by tracking previously 

detected keypoints rather than re-detecting them in each 

frame. BlazePose outputs 33 keypoints [23]; but this 

research selects 15 primary keypoints, including major 

body joints (shoulders, elbows, wrists, hips, knees, and 

ankles) and key facial landmarks, while excluding 

keypoints that are not essential for pose estimation [2]. 

This selection provides a comprehensive 2D 

representation of the human body, as shown in Figure 2. 

Before 2D joint estimation, images from all cameras 

are synchronized to ensure temporal alignment across 

views for consistent detection. Each frame is processed 

individually, with the model outputting pixel coordinates 

and a confidence score (0–1) for each keypoint. To 

enhance accuracy, only keypoints with confidence scores 

above 0.8 are retained, reducing false detections from 

occlusions or challenging poses. The extracted 2D joint 

data is structured into arrays for each camera view, 

enabling synchronized multi-camera processing. This 

serves as input for the fusion algorithm, facilitating 

precise 3D joint reconstruction. Leveraging MediaPipe's 

efficient architecture, this approach achieves low latency, 

making it ideal for real-time multi-view analysis. 

 

 
 

Figure 2. Defined 2D human joints 

2.2 Marker Detection and Alignment  

In this study, ArUco markers are chosen for their 

unique binary patterns, which enable easy identification 

and robust tracking. Unlike checkerboards or circular 

grids, ArUco markers are resilient to moderate lighting 

variations and can be reliably detected from diverse 

angles and distances, making them ideal for multi-camera 

setups [24].  

For this phase, an ArUco marker with a predefined 

size is used as the reference for automatic camera 

calibration. The bottom-left corner of the marker is 

defined as the origin of the global coordinate system, 

(0,0,0). Based on the marker's size, 𝑠, the 3D coordinates 

of the other corners are defined as (𝑠, 0,0), (0, 𝑠, 0) and 

(𝑠, 𝑠, 0) . These fixed coordinates serve as reference 

points for aligning all camera views within a unified 

coordinate system. 

The process begins with detecting the precise corner 

coordinates of the marker in the camera image planes. 

These detected coordinates serve as observed 

measurements for the fusion algorithm, which 

subsequently estimates both extrinsic and intrinsic 

camera parameters. The extrinsic parameters, 

represented by the 3 × 4  transformation matrix [𝑅|𝑡], 
define each camera’s orientation, 𝑅 relative to the marker 

and its position, 𝑡 in 3D space. Meanwhile, the intrinsic 

parameters such as FoV, influence how 3D points are 

projected onto the image plane. This simultaneous 

estimation ensures that all camera views are accurately 

aligned within a unified global coordinate system, 

reducing projection errors and improving multi-view 

consistency. 

2.3 Estimation of Human Pose and Camera 

Parameter   

EKF serves as the core algorithm for simultaneously 

estimating the 3D human joint positions and the intrinsic 
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and extrinsic parameters of the multi-camera system by 

integrating synchronized 2D joint detections and marker-

based measurements to iteratively refine the state vector 

𝑋𝑡  (Equation (1)), which encapsulates both the human 

joint positions and the camera parameters.  

The EKF follows a prediction-correction cycle. In the 

prediction phase, the system propagates the state and 

uncertainty forward using a process model, where each 

joint position evolves independently over time, modeled 

as: 

𝑥𝑡+1,𝑗 = 𝑥𝑡,𝑗 + 𝜂𝑡 (4) 

where 𝜂𝑡,𝑗~𝒩(0, 𝑄𝑡) represents Gaussian process noise, 

with 𝑄𝑡  as a covariance matrix capturing uncertainties 

for each joint and camera. The prediction step maintains 

a Gaussian assumption centered around the current 

estimate while updating the state distribution over time. 

Unlike methods relying on pre-known 3D joint positions 

or calibrated camera parameters, our approach uses the 

EKF framework to estimate both the joint positions and 

camera parameters dynamically. The EKF estimates and 

refines these parameters through its fusion of multi-

camera observations and marker-based measurements, 

ensuring adaptability to dynamic environments.  

In the correction phase, 2D joint detections and 

marker corner coordinates are incorporated to refine the 

state vector. The observation model predicts the expected 

pixel coordinates (𝑢𝑒 , 𝑣𝑒 ) for both joints and marker 

corners based on the current state estimate. Figure 3 

illustrates how a point (joint or marker corner) is 

transformed from the world coordinate system to the 

camera coordinate system and finally to the pixel 

coordinate system. 

 

 
  

Figure 3. Imaging geometry for joint or marker corner (a) 

projection joint or marker onto image plane (b) joint or 

marker in pixel coordinates  

 

To map global joint positions to each camera 𝑖’s local 

frame, the EKF employs a transformation matrix 𝑇𝑖  and 

a rotation matrix 𝑅𝑖 which is defined as:  

𝑣ℎ,𝑗|𝐶𝑖
= 𝑅𝑖

−1 ∙ 𝑇𝑖
−1 ∙ vℎ,j|G (5) 

where vℎ,j|G and vℎ,j|Ci
 represent the 𝑗-th joint location in 

the global frame and in the camera 𝑖’s frame respectively. 

They are defined as: 

vℎ,j|G = [𝑥ℎ,𝑗 , 𝑦ℎ,𝑗 , 𝑧ℎ,𝑗 , 1]
𝑇
 (6) 

𝑣ℎ,𝑗|𝐶𝑖
= [𝑥ℎ,𝑐𝑎𝑚.𝑗 , 𝑦ℎ,𝑐𝑎𝑚,𝑗 , 𝑧ℎ,𝑐𝑎𝑚,𝑗 , 1]

𝑇
 (7) 

Similarly, each corner of the marker is mapped to 

each camera 𝑖’s local frame: 

𝑣𝑚,𝑘|𝐶𝑖
= 𝑅𝑖

−1 ∙ 𝑇𝑖
−1 ∙ v𝑚,k|G (8) 

where v𝑚,k|G  and v𝑚,k|Ci
 represent the marker’s 𝑘 -th 

corner location in the global frame and in the camera 𝑖’s 

frame respectively. They are defined as: 

v𝑚,k|G = [𝑥𝑚,𝑘 , 𝑦𝑚,𝑘 , 𝑧𝑚,𝑘, 1]
𝑇
 (9) 

𝑣𝑚,𝑘|𝐶𝑖
= [𝑥𝑚,𝑐𝑎𝑚.𝑘, 𝑦𝑚,𝑐𝑎𝑚,𝑘 , 𝑧𝑚,𝑐𝑎𝑚,𝑘, 1]

𝑇
 (10) 

The transformation matrix 𝑇𝑖 , where (𝑥𝑐,𝑖 , 𝑦𝑐,𝑖 , 𝑧𝑐,𝑖) 

represents the translation of camera 𝑖  in the global 

coordinate system.  is defined as: 

𝑇𝑖 = [

1 0 0 𝑥𝑐,𝑖

0 1 0 𝑦𝑐,𝑖

0 0 1 𝑧𝑐.𝑖

0 0 0 1

] (11) 

The rotation matrix 𝑅𝑖  accounts for the camera’s 

orientation, combining rotations along the 𝑥, 𝑦,  and 𝑧 

axes:  

𝑅𝑖 = 𝑅𝑧(𝜃𝑐,𝑖)𝑅𝑦(𝜙𝑐,𝑖)𝑅𝑥(𝜓𝑐,𝑖) (12) 

where 𝜃𝑐,𝑖 , 𝜙𝑐,𝑖 , and 𝜓𝑐,𝑖  are the roll, pitch, and yaw 

angles of camera 𝑖, respectively. These transformations 

map global 3D positions to the local coordinate system 

of each camera, resulting in the camera-frame 

coordinates (𝑥𝑐𝑎𝑚 , 𝑦𝑐𝑎𝑚 , 𝑧𝑐𝑎𝑚).  

The transformed 3D coordinates are then projected 

onto the image plane to compute the expected pixel 

coordinates (𝑢𝑒, 𝑣𝑒) normalized by the image width (𝑤) 

and height (ℎ) to ensure values range between 0 and 1.  

Using the horizontal and vertical FoV (𝐹𝑜𝑉ℎ and 𝐹𝑜𝑉𝑣) 

the equations for the expected pixel coordinates are: 

𝑢𝑒 =
1

2
(1 +

𝑥𝑐𝑎𝑚

𝑧𝑐𝑎𝑚 𝑡𝑎𝑛 (
𝐹𝑜𝑉ℎ

2
)

) (13) 

𝑣𝑒 =
1

2
(1 +

𝑦𝑐𝑎𝑚

𝑧𝑐𝑎𝑚 𝑡𝑎𝑛 (
𝐹𝑜𝑉𝑣

2
)

) (14) 

In this formulation, we use the pinhole camera model, 

42nd International Symposium on Automation and Robotics in Construction (ISARC 2025)

1517



detailed in figure 4, where FoV inherently defines the 

camera’s intrinsic properties seamlessly integrating with 

our projection model. This approach eliminates the need 

for focal length as a separate parameter, making the 

formulation more compact and efficient while 

maintaining accuracy in projection calculations. This 

formulation is applicable to both human joints and 

marker corners, denoted as (𝑢𝑒ℎ,𝑗
, 𝑣𝑒ℎ,𝑗

) for the 𝑗 th 

human joint and (𝑢𝑒𝑚,𝑘
, 𝑣𝑒𝑚,𝑘

) for the 𝑘-th marker corner. 

 

 
 

Figure 4. Expected measurements from planar projection 

 

For 𝑛 cameras, the expected measurement vector 𝑧𝑡,𝑒 

combines the expected 2D pixel coordinates of the 

detected human joints, 𝑧𝑡,𝑒,ℎ  and marker corners, 𝑧𝑡,𝑒,𝑚 

from each camera 𝑖. It is defined as:  

𝑧𝑡,𝑒 = [𝑧𝑡,𝑒,ℎ , 𝑧𝑡,𝑒,𝑚]
𝑇
 (15) 

𝑧𝑡,𝑒,ℎ = [𝑢𝑒,ℎ,𝑖,1, 𝑣𝑒,ℎ,𝑖,1, … , 𝑢𝑒,ℎ,𝑖,𝑛 , 𝑣𝑒,ℎ,𝑖,𝑛]
𝑇
 (16) 

𝑧𝑡,𝑒,𝑚 = [𝑢𝑒,𝑚,𝑖,1, 𝑣𝑒,𝑚,𝑖,1, … 𝑢𝑒,𝑚,𝑖,𝑘, 𝑣𝑒,𝑚,𝑖,𝑘]
𝑇
 (17) 

Here 𝑢𝑒,ℎ,𝑖,𝑗  and 𝑣𝑒,ℎ,𝑖,𝑗  are the expected pixel 

coordinates of joint 𝑗  in camera 𝑖 ’s image plane, and 

𝑢𝑒,𝑚,𝑖,𝑘  and 𝑣𝑒,𝑚,𝑖,𝑘  are the pixel coordinates of marker 

k’s corners. 

Once the actual measurements 𝑧𝑡,𝑎, obtained directly 

from sensors as noisy 2D pixel coordinates of detected 

joints and marker corners, are available, the measurement 

residual,𝑦𝑡  is computed: 

𝑦𝑡 = 𝑧𝑡,𝑎 − 𝑧𝑡,𝑒 (18) 

where 𝑧𝑡,𝑎  is derived from the outputs of the 2D joint 

detection and marker detection algorithms steps 

discussed earlier in the methodology, while 𝑧𝑡,𝑒 

represents the expected measurements predicted by the 

observation model. 

To incorporate this residual into the state update, the 

Kalman gain 𝐾𝑡 is computed as: 

𝐾𝑡 = 𝑃𝑡𝐻𝑡
𝑇(𝐻𝑡𝑃𝑡𝐻𝑡

𝑇 + 𝑅𝑡)−1 (19) 

where 𝐻𝑡  is the Jacobian of the observation model 

relative to the state vector, capturing the sensitivity of the 

measurements to changes in state. 𝑅𝑡 is the measurement 

noise covariance matrix which captures the uncertainty 

in each camera’s observation and 𝑃𝑡 is the predicted state 

covariance matrix, representing uncertainty prior to 

incorporating the measurements. 

In the measurement update step, the EKF integrates 

the observed measurements 𝑧𝑡,𝑎. The updated state 𝑥𝑡+1  

is computed as: 

𝑥𝑡+1 = 𝑥𝑡+1
− + 𝐾𝑡𝑦𝑡  (20) 

and the updated state covariance, 𝑃𝑡+1 is:  

𝑃𝑡+1 = (𝐼 − 𝐾𝑡𝐻𝑡)𝑃𝑡+1
−   

 

(21) 

where 𝑥𝑡+1
−  and 𝑃𝑡+1

−  the predicted state and covariance 

before the measurement update.  

This EKF-based filtering algorithm effectively 

combines predicted and observed data, yielding precise 

and robust 3D joint estimations and camera parameter 

calibrations in dynamic, multi-camera environments. 

3 Experimental Setup 

To evaluate the proposed EKF-based multi-camera 

calibration and 3D joint estimation system, the 

implementation was carried out in the Webots simulation 

environment. Webots was chosen for its ability to 

replicate real-world scenarios in a controlled setting, 

providing access to ground truth data, enabling repetitive 

and reproducible experiments, and allowing systematic 

testing of algorithms under various configurations.   

The simulation was designed to emulate a real-world 

multi-camera setup with four static cameras and a 5 cm 

ArUco marker. A pedestrian proto model simulated a 

human subject, with predefined joint positions 

replicating realistic human motion. Planar projection was 

utilized to simulate the 2D image planes of the cameras, 

enabling accurate marker and joint detections essential 

for subsequent calibration and estimation steps. The key 

parameters of the simulation environment are as follows: 

• Image Resolution: 640 × 640 pixels. 

• Marker Size: 5 cm (edge length). 

• Camera Configuration: Planar layout with four static 

cameras. 

• Subject: Webots pedestrian proto model. 

• Number of Trials: 30. 

The evaluation focused on quantifying the accuracy 

of the estimated 3D joint positions, camera positions, 
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camera orientations, and camera FoVs. The Root Mean 

Square (RMS) error was used as the primary metric for 

all evaluations: 

𝑅𝑀𝑆 = √
1

𝑁 ∙ 𝐾
∑ ∑ ‖𝑥𝑖,𝑘

𝑡𝑟 − 𝑥𝑖𝑘
𝑒𝑠𝑡‖

2𝐾

𝑘=1

𝑁

𝑖=1

 (22) 

where, 𝑁 is the total number of measurements, 𝐾 is the 

total number of cameras, 𝑥𝑖,𝑘
𝑡𝑟  and 𝑥𝑖𝑘

𝑒𝑠𝑡  are the true and 

estimated values of the quantity being evaluated. 𝑥 can 

represent joint positions, camera positions, camera 

orientations, or FoVs.  

By simulating a multi-camera system with realistic 

projections, human motion, and marker detections, the 

experimental setup successfully replicated the challenges 

of real-world environments. 

4 Results  

This section presents the proposed methodology's 

findings in the Webots simulation environment. Figure 5 

illustrates the successful detection of joints in the 

pedestrian model and all four corners of the ArUco 

marker in the image planes from all four cameras. The 

joint detection provides 2D coordinates for estimating 3D 

joint positions, while marker corner detection establishes 

a global reference for camera calibration by defining a 

consistent coordinate system. 

 

Figure 5. Detection of joints and ArUco marker corners 

across all camera views 

The performance of the proposed methodology was 

evaluated by analyzing the error trends for joint positions, 

camera positions, camera orientations, and camera FoV. 

The results showed an RMS error of 0.18m for joint 

positions and 0.32𝑚  for camera positions, while the 

RMS errors for camera orientations and FoV were 

approximately 11°  and 9° , respectively. Figure. 6 

illustrates the error trends for joint positions, camera 

positions, camera orientations, and camera FoV over 

time. The graphs show a steady reduction in errors as the 

EKF iteratively refines the state estimates using multi-

camera observations and marker-based measurements. 

 

Figure 6. Error trends of joint positions and camera 

parameters  

These RMS errors indicate that the proposed system 

achieved automatic camera calibration for 3D joint 

estimation. The consistently small deviations across trials 

highlight the robustness of the methodology in handling 

challenges such as sensor noise, nonlinearities, and 

multi-camera synchronization. Combined with the error 

trends shown in Figure 6, these findings validate the 
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reliability and accuracy of the framework in achieving its 

objectives in a controlled simulation environment.  

5 Conclusion 

This study proposed a novel framework for automatic 

camera calibration for 3D joint estimation using a multi-

camera system. By integrating an EKF for multi-camera 

data fusion and an external marker-based calibration 

method, the framework eliminates the need for manual 

calibration. Simulations conducted in Webots 

demonstrated its capability to accurately estimate 3D 

joint positions and maintain reliable calibration with four 

cameras. Results showed that the automated calibration 

method reduced reliance on manual interventions, 

highlighting the framework’s potential for real-world 

applications where rapid deployment and adaptability are 

critical. 

Despite promising results, certain limitations present 

opportunities for future research. Simulations, while 

providing controlled and reproducible results, may not 

fully capture real-world complexities such as dynamic 

lighting, occlusions, and irregular motion patterns. 

Future work should validate the framework in real-world 

settings to assess its robustness. While our approach 

models intrinsics via FoV, camera parameter calibration 

remains a challenge, as real-world systems often require 

calibration of focal length, principal point, and distortion 

coefficients. Additionally, the reliance on external 

markers may pose challenges in cluttered environments 

where occlusions impact visibility. Optimizing marker 

placement, increasing marker count, or exploring 

marker-free calibration could enhance performance. 

Scalability is another concern, as real-time EKF updates 

and multi-camera processing demand high computational 

resources. Leveraging parallel processing or Edge AI 

acceleration could improve efficiency for real-time 

deployment. Lastly, while EKF performed well, 

exploring alternative filtering techniques could further 

improve accuracy or reduce computational overhead. 

With these advancements, the proposed framework 

has the potential to evolve into a robust and adaptable 

tool for enhancing worker safety and efficiency in high-

risk, dynamic environments. This progress would pave 

the way for more intelligent and scalable systems in 

construction automation, furthering the integration of AI 

and robotics in real-world applications. 
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