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Abstract -

Deterioration and maintenance are a constant part of the
operational phase of a structures life cycle. Managing and
analyzing a structure’s history of damage and repair is essen-
tial for present operational decisions. Images are a central
way of documenting the location of damages during mainte-
nance, but often lack references to the structure. Mapping
defects not only spatially, but also over time, can give inspec-
tors a deep insight into the health of a structure. Therefore,
we present LiLoc, a module for localizing images of inspec-
tion documentation in laser scans. Images are matched to
the panoramic images of a laser scan, and matrix transfor-
mations for mapping points to laser scans are determined.
Extracted matrices can be used to transform damage masks
and other overlaying information. We then compare the al-
gorithms on two bridge data sets.

Keywords -
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1 Introduction

The maintenance effort required for infrastructure is at
an unprecedented high with many concrete structures in
Europe and North America reaching the end of their life
span. Among the various activities involved in infras-
tructure upkeep, inspections stand out as the most critical
component for assessing the health and integrity of struc-
tures. This is especially true for concrete bridges, for
which regular inspections throughout their lifespan are an
absolute necessity for public safety.

Currently, the inspections in Germany are in most cases
conducted by traversing the bridge, identifying old and
new defects, documenting the bridge’s current state with
images and written notes, and finally summarizing the in-
spection results in a standardized report, consisting of text
and images. The images document defects visually, and
are used for referencing the defects in later inspections to
enable the evaluation of defect progression. Textual in-
formation is used to further describe the defect, such as
material and size. Usually, the textual information also
describes the location of the defect, such as the building
component identifier, and less often, road kilometer or
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cardinal direction. Due to a lack of detail, this recorded
location is often imprecise. Finding the defect again is
therefore difficult, even though it is required as a basis
for the analysis of the structural condition and the defect
progression. Enhancing the largely analog and inefficient
inspection process through digital tools enables earlier de-
tection of defects and defect progression, thereby provid-
ing a stronger foundation for making informed operational
decisions.

One possible solution is creating a defect map, meaning
amodule for a Digital Twin (DT) of the structure that stores
defect information and location over time. The planning
and execution of maintenance measures for bridge struc-
tures benefits from the concept of DTs. Inspectors can
easily locate defects with the defect map in a 3D model,
while operators can efficiently analyze large amounts of
data on a holistic level. Especially the comprehensive
map of all defects on a structure over time improves the
informational value of inspections by also giving exact
spatial information. This defect map will save time during
inspections and allow operators to make more informed
decisions during the life cycle of a bridge. While a lot
of data is available with many inspections reaching back
decades, mapping defects from older or current inspec-
tions manually is however inefficient.

The major hurdle to overcome for automatically cre-
ating a defect map is transforming the data from existing
databases. Since the location of defects is often only docu-
mented in inconsistent and imprecise textual descriptions,
automatically placing a defect on a 3D model becomes
challenging. Inspection images may contain hints to the
location of a defect, but often lack context, consisting of
close ups and zoomed-in pictures for a detailed documen-
tation of defects. Thus, a way to localize images from
historical databases is an essential step for the creation of
a defect map.

Furthermore, a 3D model into which defects can be
mapped is required. Capturing the as-built state of a struc-
ture by creating a digital model using laser scanning has
been used in practice for several years. As laser scanning
allows for the efficient generation of an as-built model,
and images of defects are readily available, combining the
two methods enables comprehensive defect mapping in
conjunction with detailed visual and textual information.
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Therefore, we propose an approach to map defects using
one-time laser scans and images from multiple inspections
through feature matching.

2 Related Works

Improving the mapping of defects is an important topic
in structural health research, with a focus on accurately
and automatically localizing defects in a 3D model. An
often-used tool for concurrent 3D model creation and de-
fect mapping are Unmanned Aerial Systems (UAS). For
example, Lin et al. [1] use an UAS to take images of a
bridge. The images are used to create a 3D model with
Structure from Motion (SfM), and therefore first clustered
based on GPS coordinates for to prevent mismatches due
to the inherent self-similarity of bridge structures. Defects
are then detected on the same images. Since the location
of the latter within the 3D model is known, the detected
defects can be mapped into the model easily. However,
extensive flight planning is necessary to account for GPS
inaccuracy. A similar approach is used by Tan et al. [2]
for external building walls. Here, GPS is used to compute
the UAS position, which is then used to map defects onto
a Building Information Modelling (BIM) model.

Research has shown that localization with GPS can lack
the accuracy required for defect mapping, especially in
areas with little reception, such as underneath a bridge.
Therefore, additional technology has been tested to in-
crease localization and thereby mapping accuracy. Yoon
et al. [3] utilize an UAS with LiDAR, GPS, and IMU to
achieve an accuracy of 10cm even underneath a bridge.
The system is however only evaluated on flat surfaces,
such as one side of a bridge column, and issues due to
GPS inaccuracy are reported, such as image curving, dis-
tortion, and areas missed by the UAS. In another example,
Zhao et al. [4] use an UAS with LiDAR, Ground Con-
trol Points (GCP) and Check Points (CP) to take images
of a concrete dam. Next, cracks larger than 5mm are
detected and mapped with Scale-Invariant Feature Trans-
form (SIFT) [5] and SfM. However, the authors note that
the GCPs are critically necessary for reliably mapping the
defects, but the setup of GCP and CP is time-intensive and
therefore inefficient.

Alternative, non-GPS methods for mapping defects have
been tested, mainly relying on camera data. Simultane-
ous localization and mapping (SLAM), specifically ORB-
SLAM, is used on images taken by an UAS to localize
defects underneath a longer bridge structure by Jiang et al.
[6]. The images were taken from a distance of 2m and
the method results in a localization error of around 25 cm.
Bartczak et al. [7] use images taken by an UAS for pho-
togrammetric reconstruction of a 3D model by employing
sequential image pairing, explicitly foregoing GPS due to
inaccuracies. Defects are detected in the UAS images and

thereby mapped to the resulting 3D model.

The previous literature shows the general suitability of
using UAS for defect mapping. If an image is used for
3D model creation and defect detection concurrently, the
defects are mapped into the resulting model automatically.
However, UAS rely on GPS or other methods to localize
themselves and thereby images. The previously presented
studies show that these methods are still time- and/or cost-
intensive, and prone to localization errors. Additionally,
although the research is promising, there are further issues
with the usage of UAS for defect mapping. First, UAS
require a trained user for utilization, which adds further
costs to the inspection process, as they cannot replace
inspectors. UAS have to keep a safe distance to walls,
which decreases the defect resolution in an image. In
Xiao et al. [8] for example, close-up shots were taken, but
could not be used for model generation successfully and
were therefore discarded, leaving their data unavailable
for defect detection. The detection of fine cracks with a
width of 0.1 mm is required during inspections. Second,
usage of UAS is highly regulated and can be restricted in
environments such as the vicinity of critical infrastructure,
which highway bridges are part of.

In summary, while the most common method of 3D
model creation and defect mapping for bridges with UAS
does have accuracy issues with regards to localization and
resolution, it’s not an unsuitable method, and it’s apparent
that it will play a major role in future inspection processes.
However, due to usage restrictions and efficiency consid-
erations, other methods of defect mapping are necessary.
A simple alternative for 3D model creation are laser scans
with portable scanners, which require little training and
are explicitly encouraged in German inspection regula-
tions [9]. Laser scanners usually record either panoramic
or stitched images of their scanning pose to capture color
information in the point cloud. While panoramic images
can be taken during laser scans and are mapped to the
scans point cloud, the images are not suitable for defect
detection. Therefore, scans are usually not used for defect
mapping.

Both laser scanning and UAS are used for as-built model
creation but only consider the current state of the struc-
ture. A wealth of historical defect images exists, and new
images are taken regularly during in-person inspections.
Automatically mapping this defect data into a laser scan
fulfills the need for a defect map. It also offers additional
benefits, as the historical data is very valuable during in-
spections, e.g., to assess defect progression.

This historical data is not considered by any of the
studies described previously, but the textual location de-
scriptions have been considered the two following studies.
Gobels and Beetz [10] localize defects via text from bridge
defect inspection reports with an ontology called RELOC.
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The localization is accurate to the structural component
and the directions left/right/top/bottom, with the level of
detail corresponding to the detail of the inspectors notes.
Heise et al. [11] show the importance of the spatial lo-
cation of defects in reports, and propose a linked data
approach to road and bridge infrastructure data. Through
mapping defect location between cross-domain systems,
such as road and bridge databases with differing spatial
reference systems, defect information can be referenced
into other systems and historical data can be integrated. It
is obvious that neither of these two works consider image
data, which are not as prone to human error as text-based
descriptions, or achieve an exact localization. As men-
tioned before, none of the other works discussed earlier
consider historical data at all. Therefore, we focus on ef-
ficiently and accurately localizing current and historical
defect images in present laser scans.

Since the historical data consists predominantly of in-
dividual images, image registration is a possible solution
for mapping this data to the panoramic images in the laser
scans. Image registration is the process of aligning two
images of the same subject with different camera angles,
resulting in a homography. One approach for this is key
point based image matching. SIFT and adjacent methods
extract comparable key points in both images, which are
then used for image alignment. SIFT has previously been
used for image retrieval in panoramic images, for example
by Zamir and Shah [12].

In recent years, image matching using neural networks
has become a dominant area of research. Neural net-
work based key point extractors and matching methods,
such as XFeat [13] and LightGlue [14] show a significant
improvement in speed and accuracy over previous meth-
ods. A common research problem is image matching for
panoramic images, such as street scenes or from laser scan-
ners. Orhan and Bastanlar [15] use Convolutional Neural
Networks (CNNs) to generate searchable feature sets on
panoramic images by using a sliding window approach
instead of rectifying multiple images. Kendall et al. [16]
use a CNN for 6-DoF camera pose regression on a learned
environment.

Image registration can be applied to all kinds of images.
It is not limited to matching defect images with panoramic
images, but can also map a historical image to a current
image taken from a different angle. This is especially
relevant considering UAS-image-based 3D models, into
which in the future, historical defects can also be mapped.

3 LiLoc

We present LiLoc, a Python module for localizing im-
ages in LiDAR scans with the explicit purpose of creating
a defect map for structures. The module is made up of

Figure 1. Cube configuration of the laser scan im-
ages. Every global camera pose C, is associated
with six images (Up, Down, Left, Right, Front,
Back). f is the focal length, p is the image width.

three stages: Image Extraction, Image Matching, and Pro-
Jection.

3.1 Image Extraction

First, laser scan images and poses are extracted from
a LiDAR scan. As input, we assume point clouds in the
open general-purpose ES57 format [17] with multiple scan
locations and RGB images. For best results, the scan
locations should already be geo-referenced or registered
among each other.

The images are extracted as rectified images in a cube
configuration (see Figure 1). Every image is saved with
an associated pose frame as a transformation matrix with
translation and rotation. Pose frames are exported as JSON
files with references to the associated JPEG file. We also
attempt to extract camera information, such as focal length,
from the E57 file.

3.2 Image Matching

Image matching is done by first identifying visually dis-
tinct keypoints in defect and scan images. LiLoc supports
keypoint detection using Scale-Invariant Feature Trans-
form (SIFT), as well as XFeat [13] for finding keypoints
with significant features. XFeat uses a convolutional neu-
ral network for finding features, which provides faster
and more accurate keypoint detection than older meth-
ods. While SIFT produces a variable amount of keypoints,
XFeat produces a maximum amount of 4096 keypoints,
which are filtered by keypoint quality. All keypoints are
saved per image and can be cached to disk for later reuse.

The second stage of image matching is finding keypoint
matches. For image matching, we provide two matching
methods: Exhaustive matching and cross matching. Ex-
haustive matching matches every image with every other
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image, such as to find matches between all images of an
inspection, or a defect instance, if one is specified. Cross
matching matches every image of a set A with every image
of a set B. This is useful for finding matches between laser
scan images and inspection images, or between different
capture dates.

Supported matching algorithms are k-Nearest-
Neighbour (kNN) and LightGlue [14], a learned feature
matching algorithm using deep neural networks. Both
matching algorithms return a set of keypoint matches.

If the number of matches exceeds a threshold value,
LiLoc attempts to find a homography between image pairs
using OpenCV. This results in a perspective transformation
matrix 7. Results are written out in JSON format.

3.3 Projection

In the case of laser scan matching, we can use the match
transform 7 to project points from the defect image onto
the laser scan or a 3D model. For this, the intrinsic and
extrinsic camera matrix (C; and C, respectively) are re-
quired for the transformation. The extrinsic camera matrix
can be constructed from the position of the scanner and the
direction of the scan image. The formula for the intrinsic
camera matrix is as follows:

S 0 cx
Ci=10 fy Cy (1)
0O O 1

We assume a pinhole camera model with a cube pro-
jection arrangement using square images with resolution
P for width and height. Due to the cube arrangement, the
focal length is equal to the half the image width/height
fx = fy = P/2, resulting in a 90° field of view. Since
the camera center is also the image center, it also follows
cx = ¢y = P/2. Thus, we can simply write the intrinsic
camera matrix as:

P/2 0 P2
C;=|0 P/2 P2 2)
0 0 1

The extrinsic matrix C, = (R|t) encodes rotation R and
translation ¢ of the camera. Combining the extrinsic and
intrinsic coordinates, we can obtain a directional vector 7
from an image coordinate p.

7=C.C; ]3) (3)
The image coordinate is equal to the image center for now,
but can be expanded when the defect position in the image
is given. From position ¢ towards direction 7, we use a
cylinder cast (analogous to a ray cast) with a radius of
10cm to find the closest point in the laser scan. We use
the median of the closest 10 points to reduce the impact of
outliers. This results in a 3D position for the defect image.
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Figure 2. Match matrix of 57 defect images of to 8x6
laser scan pose images of Bridge A (scan-to-defect)
using XFeat + LightGlue.

4 Case Study Results

Our approach was tested on two case studies consisting
of two different highway bridges. For the lasers scans,
a Leica RTC 360 was used, and photos were taken with
Android and iOS smartphones.

Bridge A is a concrete bridge with a highway on-ramp.
A full laser scan with 8 poses was taken, and images of
concrete-based defects were collected on the same day.
The individual scans were combined to a point cloud, and
the point cloud was then registered to a pre-existing BIM
model. For Bridge B is a 600 m pre-stressed concrete
bridge. Partial laser scans were taken at five poses and
504 pictures of present defects in different camera angles
were collected.

For Bridge A, we compare SIFT + kNN-Matching with
XFeat + LightGlue. We only focus on XFeat + LightGlue
for Bridge B.

4.1 Scan matching

For localization of the defect images in the laser scans,
we attempt a match of every defect image with every scan
image. For this, we extracted the scan images as described
in Section 3.1. The matching threshold for all tests was
set to 30 matches.

For this test we use XFeat as the keypoint extractor and
LightGlue as the keypoint matcher. Bridge A with 8 scan
locations (resulting in 48 rectified scan images) and 57
defect images results in 15 matches (see Figure 2). 10
images were correctly matched to at least one scan image,
allowing for localization in the point cloud. Even with
limited context, the matching performed well. Figure 3
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Figure 3. Example of a positive match between a
panoramic image (left) and a defect documentation
image (middle). The defect image is projected onto
the scan pose (right).

Figure 4. Projection of a defect image of graffiti on
the concrete wall below Bridge A.

shows an example of spalling on the ceiling of the highway
bridge. The detailed image of the defect was correctly
matched to the scan image. Images that could not be
matched to any scan image consist of extreme close-ups or
of areas that the scanner did not cover. No false positives
occurred in this limited data set.

We tested the projection capabilities with example im-
ages. Figure 4 shows the point cloud below the bridge.
From the laser scan position, the matching defect image
was projected onto the nearby wall. This links the defect
to the point cloud with a 3D position.

As a baseline comparison, this data set was tested with
SIFT features and kNN-matching. This resulted in 67
matches. Only four of the matches were correct (6% pre-
cision). Surprisingly, these four matches were matches
that XFeat and LightGlue did not recognize. The low pre-
cision shows that classic keypoint matching methods are
not suitable for finding matches in larger databases.

Bridge B with 9 scan positions (54 scan images) and
504 defect images resulted in 17 matches. We assume that
the low number of matches is due to the limited scan cov-
erage of the 600 m bridge. Again, no false positives were
found. Notable is that most matches contain text written
with chalk on the structure, like demarcations and mea-
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Figure 5. Match matrix of 57 defect images of
Bridge A (defect-to-defect). Green lines show im-
ages that could be localized to a scan position (10
total). Blue lines include images that match to at
least one localized image (18 total).

surements conducted by workers. Every matched defect
image also corresponds to only one scan position, since
the laser scan was limited to only significant locations with
almost no overlap.

4.2 Defect matching

We used the exhaustive matching method for matching
all defect images. This n X n matching allows for finding
images of the same defect in the database.

Bridge A amounts to 58 matches in total (see Figure 5).
Again, no false positives were found in this limited data
set. Considering the scan matches from Section 4.1, we
can subsequently localize overlapping and zoomed images
of the same defect. 18 images are first removed to a direct
scan match, and 22 images can be traced to at least one
scan position in total. Some sets of images form a cluster,
where 4-5 images of the same defect could be localized
among each other, but could not be matched to a scan
position.

For Bridge B we matched 504 images against each other.
Overall, 904 matches were detected (see Figure 6). Since
the image data set had up to ten pictures of the same
defect from different perspectives, the matching clusters
are larger than in Bridge A. Even though images were
sometimes taken at extreme perspectives, the images were
matched correctly (see Figure 7).

171 matches for Bridge B were manually classified as
false positives (81% precision). The largest portion of
false positives (120) turned out to be images with a crack
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Figure 6. Match matrix of 504 defect images of . .
Bridge B (defect-to-defect). width reference card, a tool often used by inspectors to

measure cracks (see Figure 8). The other false positives
were mainly due to scaffolding present at the bridge, which
shows a high degree of self-similarity. Increasing the
keypoint match threshold to 100 reduces the number of
total matches to 667 and the false positives to 47 (93%
precision).

Tracing all images of Bridge B to at least one scan
position allows localizing more defects. Filtering for false
positives, 92 images can be traced to at least one scan
position, allowing for localization in the point cloud.

4.3 Discussion

Using XFeat and LightGlue for matching shows signif-
icantly better results than using SIFT and kNN matching.
SIFT and others have been developed for image stitching
or live image tracking, such as SLAM, instead of recall-
ing images taken at separate times with different cameras.
While still useful in some of these situations (e. g. loop clo-
sure), matching entire databases produces too much false
positives to be useful. Meanwhile, Al matching methods
prove to be sensitive enough to detect significant points
even in uniform concrete surfaces.

While only a small portion of defect images could be
matched to scan images in our data set directly, exhaustive
matching could fill some gaps. Using exhaustive match-
ing to detect defect image clusters allowed for tracing these

Figure 7. Example of a positive match of two images

of the same defect, one with context, one with detail. clusters to at least one scan image. Despite this, some im-
ages still could not be traced to a scan position. This is
possibly due to incomplete laser scans or defect images
that did not provide enough context for a successful local-
ization.
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False positives were mostly due to similar objects in the
images, such as scaffolding or instruments. Still, some
false positives are due to the self-similar nature of bridges.
We have also neglected counting false negatives, as defin-
ing a false negative in terms of localization can be difficult.

5 Conclusion

We presented LiLoc, a tool for localizing defect images
in laser scans, and tested it on two self-collected data
sets. The tool supports extracting scan images from point
clouds, matching images in exhaustive and cross-matching
mode, and mapping defect images to a 3D coordinate. The
code is documented on GitHub'.

This tool paves the way for researchers, engineers and
on-site inspectors utilizing the historical data of inspec-
tions to make maintenance easier and more comprehen-
sible. With this image matching tool, historical data can
be used in conjunction with modern digital tools. This
approach can be integrated into existing inspection pro-
cesses as historical data can be linked to new digital tech-
nologies. Databases can be enriched with location specific
data, closing the gap between image data, laser scans, and
DTs.

The results show that with Al keypoint extraction, re-
liable image localization is achievable. Learned features
perform better on concrete structures than classic meth-
ods such as SIFT. Even difficult matches of pure concrete
walls can reliably be matched based on the imperfections
in the concrete. This has previously been a challenge with
classic methods.

Figure 9. Example of a match between two images of
the same defect, taken in 2005 and 2014 respectively.

Although the results are promising, some limitations
are evident. Some objects or artifacts in the image can
confuse the matching algorithm, such as measurement in-
struments or burnt in text on the image (such as the capture
date). One option would be to detect these objects using
a semantic segmentation network filter out keypoints with
a mask. Lighting conditions are also a significant impact
factor. In this paper, we have not compared large-scale

lhttps://github.com/RUB—Informatik—im—Bauwesen/
Liloc
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data sets with images under different lighting conditions
or camera modes (e.g. flash photography). The data set
should be expanded upon for realistic applications. In this
study, we have also only quantified the method’s perfor-
mance with data that was recorded concurrently. Figure 9
shows an example of a successful match of real historical
inspection data with a time difference of nine years. Due
to the difficulty of obtaining historical data sets in a large
scale, this study focused on data captured without a large
time difference. In future research, the data set should be
expanded with more data recorded at different times and
conditions. Crafting data sets that reflect these challenges
is a necessary step in future work.

Future research will focus on improving the algorithms
used in this paper, and adding new keypoint and matching
algorithms. Both XFeat and LightGlue allow for train-
ing the network to adjust to specific conditions. Training
these algorithms specifically for the materials used in the
construction industry may improve precision significantly.
Removing keypoints on equipment, as well as other cam-
era artifacts such as burnt-in dates may be masked out in
a pre-processing step. Other local feature extractors such
as GlueStick [18] work with lines in addition to points,
which may prove suitable for the built environment.
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