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Abstract 

Additive manufacturing (AM) of eco-friendly 

materials has the potential to decarbonize the 

construction industry by enabling the creation of 

complex structures with minimal waste. Clay has 

been integrated into AM processes as a building 

material, giving rise to an emerging research field 

referred to as “clay printing”. Defects, such as tearing 

and sagging, are common in clay printing and could 

affect the structural integrity, load-bearing capacity, 

and overall durability of the structures. However, 

limited research on defect detection in clay printing 

and lack of datasets restrict the development of defect 

detection models. This paper presents a tool – the 

automated defect detection (ADD) preprocessor – 

developed to generate a dataset for defect detection 

models in clay printing. The tool uses images and 

videos as input for preprocessing and labeling images 

required to build the dataset, meeting the 

requirements of defect detection models based on 

convolutional neural networks. The ADD 

preprocessor is implemented and validated as a proof 

of concept for clay printing processes. The results 

demonstrate the capability of the ADD preprocessor 

to successfully build a dataset for the deployment of 

defect detection models in clay printing. 
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1 Introduction 

Additive Manufacturing (AM) has become a 

significant innovation in the construction industry due to 

its numerous advantages that surpass “traditional” 

construction methods [1]. One key aspect, compared to 

traditional construction methods is the ability to create 

complex and customized structures without additional 

cost or material waste [2]. The layer-by-layer 

construction process enables the realization of 

geometrically intricate designs and freeform structures 

that are challenging or impossible to achieve with 

conventional formwork or machining methods [3]. 

Furthermore, additive manufacturing of eco-friendly 

materials has the potential to decarbonize the 

construction industry [4]. 

Clay, a traditional building material, has been adapted 

for AM processes and has emerged as a new research 

field, referred to as “clay printing” [5]. Clay printing 

often encounters defects during printing, such as tearing 

and sagging, that could affect the structural integrity, 

load-bearing capacity, and overall durability of the 

structures. By exploring synergies with concrete printing, 

defects in clay printing may be investigated. Defects in 

concrete printing, including tearing (breakpoints due to 

low workability of the material) [6], sagging/buckling 

(due to deformation under self-weight) [6] and shrinkage 

cracking [7], can also be observed in clay printing. 

However, research on defect detection in clay printing 

remains limited, which hinders the development of defect 

detection models due to insufficient data. 

Efforts towards automated defect detection 

approaches for AM processes have been reported, where 

most research has been focusing on fused filament 

fabrication (FFF) and, more recently and to a lesser 

extent, on concrete printing. For FFF processes, recent 

defect detection approaches for offline and real-time 

detection have been developed based on computer vision 

techniques, including comparing point clouds [8] and 

images [9] as well as on convolutional neural network 

(CNN) architectures [10, 11]. Similarly, approaches 

based on computer vision, supplemented by machine 

learning and deep learning, have been developed for 

concrete printing to detect layer deformations [12] and to 

assess geometries of additively manufactured structures 

[13]. Further approaches devised for real time defect 

detection in concrete printing have been developed based 

on detection transformers to detect and measure tearing 

with high accuracy [14]. Yet current defect detection 

approaches present several limitations. On the one hand, 

vision-based systems are used in real-time defect 

detection to monitor printing processes and detect defects, 

but are limited to the view point of the vision-based 

systems. On the other hand, defect detection models 

based on deep learning, such as CNN classification 

models, may be trained to detect and classify specific 

defects, where the scope and accuracy of the defect 

detection models are dependent of the datasets available 

for training [11]. Consequently, the need for datasets 

arises, due to the limited availability of data regarding 
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defects in clay printing. 

In this paper, the development of a tool for automated 

defect detection (ADD) is presented. The tool, named 

“ADD preprocessor”, is designed to build a dataset 

aiming to support defect detection models in clay printing 

using images and videos as input data. The image data is 

preprocessed and labeled to build the dataset, which 

meets the requirements of defect detection models based 

on convolutional neural networks. The ADD 

preprocessor is implemented and validated as a proof of 

concept for clay printing processes. The remainder of the 

paper is structured as follows. First, the methodology for 

deep-learning-based defect detection and the 

implementation of the ADD preprocessor is presented. 

Next, the proof of concept is described, followed by a 

discussion of the conclusions and potential future 

research. 

2 Deep-learning-based defect detection 

model 

In this section, the methodology for generating deep-

learning-based defect detection models is described. The 

methodology is based on a previous study of the authors 

(described in [15]), and it is adapted for clay printing. 

Considering the lack of available data for clay printing, 

the ADD preprocessor is designed and implemented as a 

tool for generating datasets for defect detection models. 

Below, a short description of the research methodology 

and the implementation for the ADD preprocessor is 

presented. 

2.1 Research methodology 

The research methodology is proposed to generate a 

deep-learning-based defect detection model using a CNN 

architecture. As described in Figure 1, the creation of 

deep-learning-based defect detection models usually 

comprises two phases, the (i) data preparation phase and 

(ii) classification model development phase. The ADD 

preprocessor focuses on the data preparation phase 

(highlighted in orange in Figure 1) and generates a 

dataset Dn as an output using images and videos as input 

data. 

In the data preparation phase, data is collected, 

preprocessed, labeled, augmented, and split. During data 

collection, n images of additively manufactured clay 

structures with and without defects are part of the dataset 

Dn. The images included in the dataset Dn may be 

collected from different sources, where the images may 

vary in size, color, and viewing angle. Next, during data 

preprocessing, the images are cropped, resized to a 

predefined size, transformed into a gray scale, and 

corrected for orientation to a consistent horizontal view. 

The gray-scale images are then labeled with the 

corresponding defect class: Tearing, sagging, buckling, 

and shrinkage cracking. Finally, for data augmentation, 

augmentation techniques, such as mirroring, noise, light 

exposure (“brightness”), rotating and random image 

cutouts, are applied to increase the size of the dataset Dn. 

Mirroring and rotating are used to improve robustness to 

random camera angles, while noise, cutouts, and variable 

exposure increase resilience to varying lighting 

conditions. For the next phase, dataset Dn is split into 

three sub sets, a training dataset (Dtraining), a validation 

dataset (Dvalidation), and a testing dataset (Dtesting). 

 

Figure 1. Methodology for generating deep-learning-

based defect detection models [15] 

In the classification model development phase, the 

classification model is developed in three steps, 

architecture definition, model training, and model testing. 

For architecture definition, the architecture of the 

classification model is selected and hyperparameters are 

defined. An architecture commonly used is the “You 

Only Look Once” (YOLO) architecture, which 

prioritizes speed, accuracy, and user-friendliness while 

preserving computational efficiency [14]. Upon defining 

the CNN architecture, the training dataset Dtraining is 

deployed to train the CNN classification model. During 
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model training, the model “learns” from existing 

relationships between known inputs (images) and known 

outputs (defect classes, e.g. “sagging”). Furthermore, 

loss metrics are used to guide the optimization of the 

CNN classification model and to evaluate the error 

between the predictions of the model and the actual target 

outcomes. In general, a decreasing loss value trending 

toward zero indicates that the model is effectively 

“learning” from the training dataset. Meanwhile, and to 

prevent overfitting during training process, the validation 

dataset Dvalidation is applied to fine-tune and evaluate the 

performance of the models during training. Upon 

completing training, the testing dataset Dtesting is used to 

test the performance of the classification model until 

achieving an acceptable accuracy. During model testing, 

evaluation metrics are used, including precision, recall 

and the mean average precision at a single intersection-

over-union threshold, to test the capacity of the model 

aiming to avoid false positive and false negative 

classifications and to expresses the prediction accuracy 

of the model. 

2.2 Implementation 

Acquiring large datasets for clay printing is 

challenging because of to the lack of research on defects 

in clay printing in the context of the construction industry. 

Existing labeling tools are limited to only annotate 

images, requiring already standardized images as inputs 

and additional tools for data augmentation. Therefore, the 

ADD preprocessor aids in collecting and standardizing 

images stemming from various sources, as well as to 

labeling and augmenting the image data to generate a 

dataset. To satisfy the requirements for deep-learning-

based defect detection models in the context of clay 

printing, the following requirements are considered: 

• Image size: CNN classification models require 

standardized image sizes to improve accuracy and 

reduce complexity [12]. Images are resized, either 

by downscaling or upscaling, to an optimal image 

size that minimizes computational cost while 

maximizing feature resolution. To ensure efficient 

batch training and adequate feature resolution, an 

image size of 640x640 pixels is predefined as the 

optimal image size for this study.  

• Colorblind model: Variations in the material color 

may affect the accuracy of the defect detection 

models [12, 14]. By using gray-scaled images, it is 

possible to prevent correlating material color with 

defect classes, as well as to increase the 

computational speed of the CNN model. In gray-

scale images, each pixel represents a specific light 

intensity, ranging from black to white, with no color 

information. 

• Defect labeling: Inconsistent rheological and 

mechanical properties of the material, dimensions 

of the extruded layers, and the number of stacked 

layers dictate the characteristics of defects, as 

discussed in [14]. However, details that might 

resemble defects may have been intentionally 

designed for esthetics and function, such as water 

protection, shading, and ventilation. Therefore, 

design intentions of additively manufactured 

structures are considered when identifying defects 

during the labeling process. The labeled images are 

accompanied by annotation files with the same 

name, containing the coordinates of bounding 

boxes that describe the location of defects and 

labels of the corresponding defect types. 

• Data augmentation: Augmentation techniques are 

employed to increase the size of the dataset and to 

improve the robustness of the CNN classification 

models. Random camera angles are introduced to 

the dataset by mirroring and rotating images in the 

range of [-20°, 20°]. Varying lighting conditions are 

introduced to the dataset by adding noise to 4% of 

the gray-scale pixel intensity values and by 

adjusting brightness in the range of [-35%, 35%]. 

A labeling strategy is defined for the ADD 

preprocessor. For each defect type, a corresponding label 

and index number is assigned (Table 1). Defects are 

manually annotated with a bounding box and labeled 

with the corresponding index number. The annotation is 

then saved in a CSV file.  

Table 1. Defect labeling for clay printing  

Label Index number 

No defect 0 

Tearing 1 

Sagging 2 

Buckling 3 

Shrinkage cracking 4 

The ADD preprocessor is implemented using Python 

programming language, together with a graphical user 

interface (GUI) for manual user inputs and processing 

algorithms for resizing input images, adjusting view 

angles, converting the images to gray scale, and 

augmenting the data. The GUI, as shown in Figure 2, 

facilitates generating datasets by importing and saving 

images into user-defined file directory (“source folder” 

and “save folder”), as well as automating the 

preprocessing steps with three main trigger buttons 

(“crop”, “process”, and “save”).  

When importing an image into the ADD preprocessor, 

areas of interest of the additively manufactured structures 

can be manually selected using the GUI and cropped with 

the crop button. When importing videos, a previous step 

is performed to capture a frame every half a second. With 

the process button, processing algorithms are triggered. 
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First, the areas of interest are centered and resized to the 

predefined optimal image size. Next, the viewing angle 

of the printed product is adjusted to ensure horizontal 

orientation, and the image is converted to gray-scale. 

Then, the generated gray-scale images are labeled with 

the corresponding defect class (tearing, sagging, buckling, 

and shrinkage cracking). Finally, the generated gray-

scale images are augmented by mirroring, adding noise 

(randomizing 4% of the gray-scale pixel intensity values), 

adjusting brightness (± 35%), and rotating (± 20°) the 

images. With the save button, the output images and 

corresponding labels and annotation files are saved for 

the classification model development phase. 

 

Figure 2. ADD preprocessor interface  

3 Proof of concept 

In this section, the ADD preprocessor functionality 

for generating datasets for clay printing is validated 

through a proof of concept. The proof of concept involves 

generating a dataset based on images collected from 

experimental tests conducted under laboratory conditions 

with a constant temperature of 20 °C and consistent 

lighting.  The robotic system used for clay printing is a 

Potterbot SCARA v4 with a linear ram extruder and 3.5-

liter extrusion tubes capable of printing highly plastic 

clays (Figure 3). Experimental tests for evaluating the 

extrudability and buildability of six clay mixtures are 

used to collect image data for defect detection. The clay 

mixtures are designed with clay contents varying 

between 20% and 30%, and various defects that might 

affect extrudability and buildability are expected during 

the printing process.  

The images are captured with a camera with a 

maximum resolution of 6000x4000 pixels (Sony Alpha 

6000) that is equipped with a lens with a focal length of 

24-105 mm (Sony FE 24-105mm F4 G OSS) and fixed 

to a tripod. The focus and lens aperture are manually 

adjusted to ensure stable and clear image quality. Images 

are taken from various viewpoints, specifically 

highlighting defects observed during the printing process. 

From the images collected for validation, a total of 16 

images are selected as input for the ADD preprocessor as 

proof of concept, from which 5 images display buckling 

defects, 3 images display sagging defects, 1 image 

displays tearing defects, and 7 images present no defects 

on the additively manufactured structures. 

 

Figure 3. Robotic system for clay printing  

As a result, the ADD preprocessor allows selecting 

areas of interest from the input images and label defects 

(Figure 4). The area of interests, marked exemplarily 

with a yellow box in Figure 4, are selected manually for 

cropping, focusing on the defects. Upon cropping, the 

defects are labeled and annotated with the corresponding 

defect types. As shown in Figure 4, a red bounding box 

annotates a sagging defect. The predefined image size of 

640x640 pixels ensures adequate feature resolution to 
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identify defects by using the context given by the pixels 

in the neighborhood. 

The output of the data augmentation has increased the 

dataset size from 16 images to 64 images, providing 

variability in the dataset, including various viewing 

angles, lighting conditions, and noise. An example of the 

output of data augmentation for a sagging defect is shown 

in Figure 5. By preprocessing the images for generating 

the dataset, including cropping, resizing, gray-scaling 

and data augmentation, the ADD preprocessor not only 

standardizes the dataset but also prepares it for efficient 

training of the CNN classification model. Owing to the 

data augmentation techniques employed in the ADD 

preprocessor, the CNN classification model can be 

trained to have a suitable performance under random 

camera angles and varying lighting conditions, while 

avoiding overfitting. 

The dataset presents positive instances that are 

classifiable according to defect type (i.e. images with 

defects) and negative instances with no detectable defects 

(i.e. images without defects). By including negative 

instances into the dataset, the defect detection model is 

enabled to learn patterns to not lead to false positive 

predictions. Even though the proof of concept has 

resulted in a dataset with a relatively small size, the 

dataset can be enlarged by collecting more images, e.g. 

obtained from open-access sources and from further 

experimental test and printings conducted in research. 

By addressing the current lack of datasets for clay 

printing, the ADD preprocessor enables the development 

of advanced defect detection models that can improve the 

structural quality and reliability of additively 

manufactured clay structures. Furthermore, the ADD 

preprocessor can be easily employed for concrete 

printing due to the synergies detected among defects in 

clay printing and defects in concrete printing. 

4 Summary and conclusions 

Automated defect detection in clay printing has been 

hindered due to insufficient data on defects in clay 

printing, driving the development and validation of the 

ADD preprocessor, a tool designed to generate datasets 

to support defect detection models in clay printing. By 

leveraging images and videos, the ADD preprocessor 

processes and labels image data to create standardized 

Figure 4. Identification of the area of interest (yellow box) for a “sagging” defect (red box) 

Processed Mirrored Brightness  35%Rotated  20 

Figure 5. Outcome of the data augmentation for a “sagging” defect 
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datasets that meet the requirements of deep-learning-

based defect detection models. The proof of concept has 

demonstrated the effectiveness of the ADD preprocessor 

in preparing positive instances that facilitate the 

identification and the categorization of defects (i.e., 

sagging, tearing, and buckling) as well as the inclusion of 

negative instances for more robust model training. 

The ADD preprocessor possesses the ability to 

generate a structured dataset for defect detection in clay 

printing. The results showcase the potential of the ADD 

preprocessor to address the lack of datasets for defect 

detection, which has hindered the development of 

autonomous defect detection in clay printing. By 

providing a streamlined workflow for data preparation 

(i.e. data preprocessing and data augmentation), the 

ADD preprocessor supports the creation of defect 

detection models that are better equipped to ensure the 

structural integrity and quality of additively 

manufactured clay structures. Compared to existing 

labeling tools, the ADD preprocessor provides control 

over image standardization and data augmentation while 

implementing a similar labeling strategy to existing 

labeling tools. Yet, the manual inputs required by the 

ADD preprocessor, such as selecting areas of interest, 

could introduce subjectivity into the dataset. 

To further drive the research towards automated 

defect detection in clay printing, future efforts could be 

directed towards real-time defect monitoring and towards 

testing the compatibility of the datasets generated by the 

ADD preprocessor with advanced neural network 

architectures, such as transformer-based models. 

Automated defect detection has the potential to advance 

the broader adoption of clay printing as a sustainable and 

reliable construction method. 
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