
566

VARIABLE NEIGHBORHOOD SIMULATED ANNEALING METHOD

AND APPLICATION FOR DESIGN

Gražvydas Felinskas
Šiauliai University

Department of Informatics
P. Visinskio str. 19, Šiauliai

e-mail: grazvis@splius.lt

Leonidas Sakalauskas
Šiauliai University

Department of Informatics
P. Visinskio str. 19, Šiauliai

e-mail: sakal@ktl.mii.lt

ABSTRACT

In this paper we discuss about production scheduling. In manufacturing industry, efficient methods to solve resource
constrained scheduling problems are needed. The aim is to find such schedule, which would meet the requirements of job
priority relations, resource constraints, minimizing it by some criteria. In many cases this criterion is project’s finishing
time. We consider job scheduling and optimization algorithms related to resources, time and other constraints. In most
cases, scheduling problems belongs to complexity class NP. In order to schedule and optimize jobs, we may apply heuristic
methods. We explore application of Simulated Annealing (SA) method combined with variable neighborhood to schedule
optimization. Computational results are given using data sets from the project scheduling problems library. Efficiency of
the algorithm was tested on high performance computing machine.

KEYWORDS

Resource Constrained, Schedule Optimization, Simulated Annealing, Variable Neighborhood.

1. INTRODUCTION

Production scheduling is an important part of the
production planning of many manufacturing and
construction companies. By scheduling it is possible
to find the proper sequence to do the jobs and the
proper schedule, when each operation of the job
should be processed at each stage of the production
or construction process.

Traditional scheduling methods, such as PERT and
CPM [1], [2], are not enough for production
scheduling, because they consider infinite resources.
Scheduling with infinite resources may give results,

which are not feasible. In manufacturing industry,
efficient methods to solve resource constrained
scheduling problems are needed. Input data for such
problems are a set of jobs, their durations, priority
rules (successors, predecessors) and necessary
resources. The aim is to find such schedule, which
would meet the requirements of job priority
relations, resource constraints, minimizing it by
some criteria. In many cases this criterion is
project’s finishing time. We consider job scheduling
and optimization algorithms related to resources,
time and other constraints. In most cases, scheduling
problems belongs to complexity class NP [3].

 567

Optimal solution can be found using full binary
recombination [4]or using methods based on ideas of
branch and bound methods [1], [5] etc. It is usually
difficult or impossible to perform a full binary
recombination in acceptable time, therefore, in order
to schedule and optimize jobs, we may apply
heuristic methods, based on priority rules [6],
evolution process ideas [7], [8], local search [9],
[10], [11], variable neighborhood search [12], [13],
etc. We explore application of Simulated Annealing
(SA) [14] method to schedule optimization because
some investigations show that development of SA is
a perspective trend to create efficient scheduling
methods.

Computational results are given using data sets from
the project scheduling problems library (PSPLib)
[15], [16]. This library contains different problem
sets for various types of resource constrained project
scheduling problems as well as optimal and heuristic
solutions. The data sets may be used for the
evaluation of solution procedures for single-mode
and multi-mode resource-constrained project
scheduling problems (RCPSP) [13], [16], [17].

However the problem is that RCPSP are NP-
complete and the solving is hard limited by available
computer resources. Testing on a personal computer
enabled us to solve tasks of the middle size, when
dimensionality of real-life problems can exceed
hundred or thousands tasks. Solving of large
problems require the great number of iterations for
each instance (5000-30000). Thus, the
parallelization of the algorithm and computing in a
high performance computer center were necessary.
A lot of applications show that heuristic methods
inherently suits for parallelization and can easily be
implemented in robust computer code. The
parallelization strategy consists of sharing the
computation of identical instances of problems
among processors and using control processor to
manage the adaptation of the sample size.

The parallel computing programs were developed
and computational results were got. All
computational results were got at the high
performance computing center CINECA, Italia
(HPC-Europe project). The sample of application to
construction design is given.

2. RESOURCE CONSTRAINED SCHEDULE

OPTIMIZATION PROBLEM

2.1. Formulation of the Problem

Let‘s denote 1} ,n{0,1,...,nJ += a set of jobs,

Jj ,d j ∈ - duration of jobs. We can define priority

relations in a set J as a set of pairs
}j beforeexecutedbemust i | j) (i, {C = . Let‘s denote

a set of resources }m{1,...,K = . All resources are

renewable and non-additive. Let’s assume that
amounts of resources Kk 0,Rk ∈> are constant.

Let‘s denote the starting moment of thj job by

0s j ≥ , and correspondingly 0r jk ≥ - amount of

thk resource, needed for performing this job. Started
jobs must be performed without breaks. The

finishing time of thj job jjj d s c += . The problem

of schedule making may be reduced to the problem
of finding a vector ()10 += ns,...,ss of jobs’ starting

time which meets priority and resource requirements
and minimizes a certain objective function. Project
finishing time is one of the most analyzed schedule
optimality criteria which was applied in this paper.
Let‘s denote }ct s|Jj {A(t) jj <≤∈= - a set of

executable jobs at the time moment t ,)s(T –

project finishing time, 1nc)sT(+= . After these

definitions we can formulate the problem
minimizing the objective function)s(T .

Find)sT(min
s

, subject to:

C)j,i(,sc ji ∈≤ ,

0≥js ,
jjj d s c += , Jj∈ , (1)

1
)(

0,, +
∈

≤≤∈≤∑ n

tAj

kkj ctKkRr . (2)

The objective function defines the finishing time of
the whole job project, inequality (1) describes
priority relations, and the inequality (2) requires to
pay heed to resource constraints.

 568

2.2. Schedule Coding and Decoding

Efficiency of schedule optimization algorithm
depends on solution coding [12], [13]. In this paper,
we analyze job scheduling problems under resource
constraints with solution coding in a shape of a
priority list [5], [18]. The job priority list

()1210 += nn b,b,...,b,b,b can be determined by jobs’

starting times vector s , where
ji bb ss ≤ , if ji < . It

is very important that this vector of starting
moments must meet priority relations and resource
constraints. On the other hand, for given priority list,
we can find the vector of job starting times
concerted with priority list and initial priority
constraints. For this we use serial decoder detailed
described in [19], [20].

At first, we must be sure that the priority list is
concerted with priority constraints. Let’s denominate
the priority list from which we can find a vector of
jobs’ starting times concerted with priority relations
as a feasible priority list. Using a set of priority
relations we can check whether the solution is
feasible or not. For any feasible job priority list, by
applying the serial decoding procedure, we can
determine jobs’ starting times vector which may
minimize a project finishing time, according to
priority relations, resource constraints, and a given
job priority list. Operating with job priority lists, the
constructed algorithm must enable us to find such
job priority list which corresponds to an optimal
solution of the problem. (1), (2). Determination of
admissibility of the job priority list is detailed
described in [19]. This determination is based on full
priority relations’ matrix which describes all jobs
which must be done corresponding to all chains of
priority relations.

2.3. The Serial Priority List Decoder

This procedure computes the early starting moments
of jobs, according to jobs’ priority list concerted
with priority relations, and resource constraints. In
schedules obtained in such way, none of jobs can be
started earlier than calculated time, without break of
priority relations or resource constraints. We can call
such schedules active ones [13]. The algorithm for
determination of the active schedule is also detailed
described in [18], [19].

3. SCHEDULE OPTIMIZATION ALGORITHM

BASED ON SIMULATED ANNEALING AND

VARIABLE NEIGHBORHOOD

3.1. Schedule Optimization Algorithm by the

Method of Simulated Annealing

Let’s consider simulated annealing (SA) algorithm
based on the priority list and the serial decoding
procedure [5], [18]. The main idea of algorithms such
as SA, is the solutions’ generation methods and
special rules for accepting new randomly generated
solutions [14]. New solutions are generated from the
current solution environment, while calculating the
values of the objective function. Usually depth
(radius) of environment is decreasing through
optimization procedure, starting from the fixed value.
In order to move from the current solution to a new
one we apply Metropolis rule, which allows, with a
certain probability, to accept solutions with a worse
objective function’s value (accept worse solution with

the probability)exp(p
k

*

t

)b(T)b(T −= , here)b(T is

current solution,)b(T * - new solution). Theoretical

recommendations for choice of appropriate
parameters of SA in continuous optimization, that
gain the algorithm’s convergence to global optimum,
has been considered in [21], [21].

While constructing the SA algorithm for schedule
optimization, we will consider two priority lists
being neighbor if they can be obtained one from
another by applying one elementary operation – shift
or swap. These elementary operations with jobs in
priority list are described in [19], [20].

3.2. Generating Random Depth of Solution

Neighborhood

Typical rules for regulation of the algorithm
parameters are Neighborhood Depth ρk = ρ0 / k

α,
Temperature Updating Function tk = t0 / k

β,
0 < α,β < 1. We constructed special neighborhood
depth generating algorithm, based on generation of
stable Pareto values:

Step 1. Set initial 1=:i and 0=:S .

Step 2. Generate U1 and U2, uniformly distributed
in [0, 1]. Then calculate

 569

() ()
α

π
π

α

παπα
1

1

1
2

1

2

11

 ⋅⋅⋅

⋅⋅⋅
⋅

−

⋅⋅−
=

−

)Usin()cos(

Usin

)Uln(

U)(sin
:Z

a

a

(α = 0.5 or α = 0.75)

ZS:S += .

Step 3. If)(TfS ≥ , then i:k =ρ , else i:=i+1 and

go to Step 2. Here)(Tf - monotonically depends on

temperature.

Influence of the rules of such type on speed and
exactness of convergence was discussed in the work
by Yang [21].

Let’s write down the following SA algorithm:

1) k = 0.

2) Let is performed k steps of the algorithm. Let’s
state that we have the priority list b where objective
function value is Z1 = T(b). We set the step
parameters ρk and tk.

3) We randomly generate numbers q and l, l ≠ q,
1 ≤ l, q ≤ n. With a probability p = 0.5, we perform
whether the shift operation or the task swap
operation.

4) If the priority list obtained by such way is not
feasible, then we repeat the step (3) until we obtain
the feasible list.

5) We repeat the steps (3) and (4) for ρk times. Let’s
indicate the list obtained after performance of ρk
feasible elementary operations by 'b .

6) We calculate the objective function Z2 = T('b)
for the priority list by applying the serial decoding
procedure.

7) The priority list is being changed according to the
Metropolis law:

if η < exp((Z1-Z2)/tk), then bb =' . k = k+1. If
k < kmax, then we repeat the step (2).

4. PROJECT SCHEDULING PROBLEM

LIBRARY PSPLIB AND APPLICATION FOR

DESIGN

This library [15], [16] contains different problem
sets for various types of resource constrained project
scheduling problems as well as optimal and heuristic
solutions. The data sets may be used for the
evaluation of solution procedures for single- and
multi-mode resource-constrained project scheduling
problems. The instances have been generated by the
standard project generator ProGen. Researchers may
download the benchmark sets to evaluate their
algorithms, and they may send their results to be
added to the library. The main parameters are given
in the following sections.

Kinds of solutions and instance sets, parameter
settings, characterization of the benchmark instances
are detailed described in [19], [20], [16]. There are a
lot of RCPSP instances (input data sets, best known
solutions) in the PSPLIB. More precisely, 480
samples for every problem with n=30, 60 and 90
jobs, and 600 samples for n=120.

Benchmark Instances from PSPLib includes this
project information:

Number of jobs or tasks (including dummy) – 32,
62, 92, 122.

Horizon (total sum of all jobs‘ durations).

Number of renewable resources (typically 4). Also
can be nonrenewable, doubly constrained.

Other project information – release date, due-date
and other.

Precedence relations – number of successors and list
of successors (jobs‘ numbers) for each job.

Jobs‘ durations and resource requests for each job.

Resource availabilities for each kind of them.

These instances were used for testing efficiency of
the algorithms and such kind of projects we can
usually meet in design. Of course, real-life single
problem (big design project) can include thousands
of jobs and their precedence relations, a lot of
constrained resources. Testing algorithms’ efficiency
with different problem sets from PSPLib can make

 570

us sure that constructed algorithms will be able to
find good solution for any other similar problem
with another initial data.

5. COMPUTATIONAL RESULTS

5.1. High Performance Computing

RCPSP are NP-complete and the solving is hard
limited by available computer resources. Testing on
a personal computer enabled us to solve tasks of the
middle size, when dimensionality of real-life
problems can exceed hundred or thousands tasks.
Solving of large problems require the great number
of iterations for each instance (5000-30000). Thus,
the parallelization of the algorithm and computing in
a high performance computer centre are necessary.
A lot of applications show that heuristic methods
inherently suits for parallelization and can easily be
implemented in robust computer code. The
parallelization strategy consists of sharing the
computation of identical instances of problems
among processors and using control processor to
manage the adaptation of the sample size.

The developed heuristic optimization algorithms are
not able to solve real life problems with hundreds
and thousands variables in a reasonable computer
time. Since the number of iterations and
combinations of algorithms’ parameters needed to
solve the problem by our approach with admissible
accuracy are very growing, it was very useful to test
our algorithms on parallel high performance
machine. We wrote the parallel code for our
algorithms using MPI. Searching solution for each
instance data set from PSPLib were independent
processes, so it was not difficult to run benchmark
tests for all instances from PSPLib with the large
number of iterations on different processors. These
benchmark tests were performed in High
Performance Computing centre CINECA, Italia.
Technical details of this parallel machine - Model:
IBM CLX/1024; Architecture: IBM Linux Cluster
1350; Processor Type: Intel Xeon Pentium IV, 3
GHz, 512 KB cache; Number of Processors: 1024;
Nodes: 512 (2 proc. on node); RAM: 1 TB (2 GB on
node); Disk Space: 5.5 TB; Operating System:
Linux SuSE SLES 8; Peak Performance: 6.1 Tflop/s;
Available compilers: Intel (F90,F77,C,C++), PGI

(F90,F77,C,C++), GNU (F77,C,C++); Parallel
libraries: MPI (mpich/gm); Queuing system: LSF.

5.2. Computational Results of the simulated

annealing with variable neighborhood

The created algorithm of Simulated Annealing was
explored by applying the method of statistical
modeling while using data sets and known solutions
from the library PSPLib. Comparison of testing
results of the developed algorithm show that the
developed algorithm allows effective solving of
RCPS problems (Table 1). The testing results show
that efficiency of the algorithm can be increased by
appropriately regulating environment depth and the
parameter of Pareto models.

Table 1. Testing results of the simulated annealing
with variable neighborhood. With n = 30, 60, 120,
the tasks were performed for 1000, 5000, 10000
iterations each.

 1 2 3

n = 30

it = 1000 448 of 480 93.33 0.21

it = 5000 476 of 480 99.17 0.08

* it = 5000 480 of 480 100.00 0.00

n = 60

it = 1000 128 of 480 26.67 4.42

it = 5000 376 of 480 78.33 2.46

* it = 5000 480 of 480 100.00 0.00

n = 120

it = 1000 1 of 600 0.17 18.27

it = 5000 52 of 600 10.83 7.62

* it = 5000 511 of 600 85.17 2.34

* it = 10000 587 of 600 97.83 0.81

Table headings: 1 - Number of instances, when
optimum or best known objective function value was
found. 2 - Percentage of finding optimum or best
known objective function value, %. 3- Average
deviation from optimum or best known objective
function value, %.

Remark: with “star” (*) are marked benchmark
tests’ results from high performance computing
system. Also is given comparison to the results of
early benchmark tests described with details in [4].

 571

6. CONCLUSIONS

SA algorithm with Variable Neighborhood for
optimizing schedules of jobs with resource
constraints, based on schedule coding with the job
priority list and the serial priority list decoding
procedure were discussed in this paper

Minimization of the objective function, while
applying several dynamic environments’ depth
adjustment methods, showed that change of solution
environment’s depth allows us to accelerate
convergence to global optimum.

High performance computing using parallel
algorithms lets us use very large numbers of
iterations for problem’s instances and in such way
during acceptable calculation time, ensure us about
efficiency of created algorithms.

While solving classes of various tasks, the
developed algorithm proved his advantage at
increased the number of iterations. In a case of
separate practical tasks when there is no need to
statistically compare a big amount of problems
solutions, it is possible to increase the number of
iterations again in order to find solutions as close to
the optimum as possible. With increasing number of
iteration convergence to optimum or best known
objective function value can be achieved with high
probability.

REFERENCES

[1] Kelley, J. E., Jr. & Walker, M. R. (1959) Critical-
path planning and scheduling, Proceedings of

Eastern Joint Computer Conference, Boston MA,
160-173.

[2] Kelley, J. E., Jr. (1961) Critical-Path Planning and
Scheduling: Mathematical Basis, Operations

Research, Vol. 9, No. 3, 296-320.

[3] Lassaigne, R. & Rougemont, M., de (1999) Logic
and Algorithms’ Complexity, Zara, Vilnius (in
Lithuanian).

[4] Savage, C. (1997) A Survey of Combinatorial Gray
Codes, Society of Industrial and Applied

Mathematics Review 39, 605-629.

[5] Brucker, P. & Knust, S. & Schoo, A. & Thiele O.
(1998) A branch and bound algorithm for the
resource-constrained project scheduling problem,
European Journal of Operational Research, Vol.
107, No. 2, 272-288.

[6] Kolisch, R. (1996a) Efficient priority rules for the
resource-constrained project scheduling problem,
Journal of Operations Management, No.14, 179-
192.

[7] Glibovec, N. N. & Medvidj, S. A. (2003) Genetic
algorithms and their application to project
scheduling problem solving, Cybernetics and system
analysis, No.1, 95-108 (in Russian).

[8] Goldberg, D. E. (1989) Genetic Algorithm in
Search, Optimization and Machine Learning,
Addison-Wesley Publishing Company, Inc., Reading,

Massachusetts.

[9] Hoos, H. H. & Stutzle, Th. (2004) Stochastic Local
Search. Foundations and Applications. Morgan
Kaufmann / Elsevier.

[10] Kolisch, R. & Hartmann, S. (1999) Project
scheduling: Recent models, algorithms and
applications, Kluwer, Amsterdam, 147-178.

[11] Voss, St. (2001) Meta-heuristics: The State of the
Art. Local Search for Planning and Scheduling,
LNAI 2148, 1-23.

[12] Hansen, P. & Mladenovic, N. (1999) An
introduction to variable neighborhood search,
Metaheuristics: Advances and Trends in Local

Search Paradigms for Optimization, 433-458,
Kluwer.

[13] Kocetov, J. A. & Stoliar, A. A. (2003) Application
of alternating environments to approximate solving
of RCPSP, Discrete analysis and operation

research, ser. 2, vol. 10, No 2, 29-55 (in Russian).

[14] Kirkpatrick, S. & Gelatt Jr., C. D. & Vecchi, M. P.
(1983) Optimization by simulated annealing,
Science, 220, 671-680.

[15] Kolisch, R. (1996c) PSPLIB - A project scheduling
library, http://www.bwl.uni-kiel.de/Prod/psplib/

[16] Kolisch, R. & Sprecher, A. (1996) PSPLIB - A
project scheduling library, European Journal of
Operational Research, Vol. 96, 205-216.

[17] Klein, R. (2000) Scheduling of Resource-
Constrained Projects, Kluwer Academic Publishers.

[18] Kolisch, R. (1996b) Serial and parallel resource-
constrained project scheduling methods revisited:
Theory and computation, European Journal of Op.
Research, Vol. 90, No. 2, 320-333.

[19] Felinskas, G. & Sakalauskas, L. (2006) Optimization
of resource constrained project schedules by
simulated annealing and variable neighborhood
search, Technological and economic development of
economy, Vol. XII, No. 4., 307-313.

 572

[20] Felinskas, G. (2007) Investigation of Heuristic
methods and application to optimization of resource
constrained project schedules, Doctoral Dissertation,
Vilnius.

[21] Felinskas, G. & Sakalauskas, L. (2003) Pareto type
models in simulated annealing algorithms,

Lithuanian Mathematical Journal, Vol.43, special
volume, 573-578 (in Lithuanian).

[22] Yang, R. L. (2000) Convergence of the Simulated
Annealing Algorithm for Continuous Global
Optimization, Journal Of Optimization Theory And
Applications, Vol. 104, No. 3, 691-716.

