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ABSTRACT 

In this paper we discuss about production scheduling. In manufacturing industry, efficient methods to solve resource 
constrained scheduling problems are needed. The aim is to find such schedule, which would meet the requirements of job 
priority relations, resource constraints, minimizing it by some criteria. In many cases this criterion is project’s finishing 
time. We consider job scheduling and optimization algorithms related to resources, time and other constraints. In most 
cases, scheduling problems belongs to complexity class NP. In order to schedule and optimize jobs, we may apply heuristic 
methods. We explore application of Simulated Annealing (SA) method combined with variable neighborhood to schedule 
optimization. Computational results are given using data sets from the project scheduling problems library. Efficiency of 
the algorithm was tested on high performance computing machine. 
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1. INTRODUCTION 

Production scheduling is an important part of the 
production planning of many manufacturing and 
construction companies. By scheduling it is possible 
to find the proper sequence to do the jobs and the 
proper schedule, when each operation of the job 
should be processed at each stage of the production 
or construction process. 

Traditional scheduling methods, such as PERT and 
CPM [1], [2], are not enough for production 
scheduling, because they consider infinite resources. 
Scheduling with infinite resources may give results, 

which are not feasible. In manufacturing industry, 
efficient methods to solve resource constrained 
scheduling problems are needed. Input data for such 
problems are a set of jobs, their durations, priority 
rules (successors, predecessors) and necessary 
resources. The aim is to find such schedule, which 
would meet the requirements of job priority 
relations, resource constraints, minimizing it by 
some criteria. In many cases this criterion is 
project’s finishing time. We consider job scheduling 
and optimization algorithms related to resources, 
time and other constraints. In most cases, scheduling 
problems belongs to complexity class NP [3]. 
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Optimal solution can be found using full binary 
recombination [4]or using methods based on ideas of 
branch and bound methods [1], [5] etc. It is usually 
difficult or impossible to perform a full binary 
recombination in acceptable time, therefore, in order 
to schedule and optimize jobs, we may apply 
heuristic methods, based on priority rules [6], 
evolution process ideas [7], [8], local search [9], 
[10], [11], variable neighborhood search [12], [13], 
etc. We explore application of Simulated Annealing 
(SA) [14] method to schedule optimization because 
some investigations show that development of SA is 
a perspective trend to create efficient scheduling 
methods. 

Computational results are given using data sets from 
the project scheduling problems library (PSPLib) 
[15], [16]. This library contains different problem 
sets for various types of resource constrained project 
scheduling problems as well as optimal and heuristic 
solutions. The data sets may be used for the 
evaluation of solution procedures for single-mode 
and multi-mode resource-constrained project 
scheduling problems (RCPSP) [13], [16], [17]. 

However the problem is that RCPSP are NP-
complete and the solving is hard limited by available 
computer resources. Testing on a personal computer 
enabled us to solve tasks of the middle size, when 
dimensionality of real-life problems can exceed 
hundred or thousands tasks. Solving of large 
problems require the great number of iterations for 
each instance (5000-30000). Thus, the 
parallelization of the algorithm and computing in a 
high performance computer center were necessary. 
A lot of applications show that heuristic methods 
inherently suits for parallelization and can easily be 
implemented in robust computer code. The 
parallelization strategy consists of sharing the 
computation of identical instances of problems 
among processors and using control processor to 
manage the adaptation of the sample size. 

The parallel computing programs were developed 
and computational results were got. All 
computational results were got at the high 
performance computing center CINECA, Italia 
(HPC-Europe project). The sample of application to 
construction design is given. 

2. RESOURCE CONSTRAINED SCHEDULE 

OPTIMIZATION PROBLEM 

2.1. Formulation of the Problem 

Let‘s denote 1} ,n{0,1,...,nJ += a set of jobs, 

Jj ,d j ∈ - duration of jobs. We can define priority 

relations in a set J  as a set of pairs 
}j  beforeexecutedbemust i | j) (i, {C = . Let‘s denote 

a set of resources }m{1,...,K = . All resources are 

renewable and non-additive. Let’s assume that 
amounts of resources Kk 0,Rk ∈>  are constant. 

Let‘s denote the starting moment of thj  job by 

0s j ≥ , and correspondingly 0r jk ≥  - amount of 

thk  resource, needed for performing this job. Started 
jobs must be performed without breaks. The 

finishing time of thj  job jjj d   s c += . The problem 

of schedule making may be reduced to the problem 
of finding a vector ( )10 += ns,...,ss  of jobs’ starting 

time which meets priority and resource requirements 
and minimizes a certain objective function. Project 
finishing time is one of the most analyzed schedule 
optimality criteria which was applied in this paper. 
Let‘s denote }ct s|Jj {A(t) jj <≤∈=  - a set of 

executable jobs at the time moment t , )s(T  – 

project finishing time, 1nc)sT( += . After these 

definitions we can formulate the problem 
minimizing the objective function )s(T . 

Find )sT( min
s

, subject to: 

C)j,i(,sc ji ∈≤ , 

0≥js , 
jjj d   s c += , Jj∈ , (1) 

1
)(

0,, +
∈

≤≤∈≤∑ n

tAj

kkj ctKkRr . (2) 

The objective function defines the finishing time of 
the whole job project, inequality (1) describes 
priority relations, and the inequality (2) requires to 
pay heed to resource constraints. 
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2.2. Schedule Coding and Decoding 

Efficiency of schedule optimization algorithm 
depends on solution coding [12], [13]. In this paper, 
we analyze job scheduling problems under resource 
constraints with solution coding in a shape of a 
priority list [5], [18]. The job priority list 

( )1210 += nn b,b,...,b,b,b  can be determined by jobs’ 

starting times vector s , where 
ji bb ss ≤ , if ji < . It 

is very important that this vector of starting 
moments must meet priority relations and resource 
constraints. On the other hand, for given priority list, 
we can find the vector of job starting times 
concerted with priority list and initial priority 
constraints. For this we use serial decoder detailed 
described in [19], [20]. 

At first, we must be sure that the priority list is 
concerted with priority constraints. Let’s denominate 
the priority list from which we can find a vector of 
jobs’ starting times concerted with priority relations 
as a feasible priority list. Using a set of priority 
relations we can check whether the solution is 
feasible or not. For any feasible job priority list, by 
applying the serial decoding procedure, we can 
determine jobs’ starting times vector which may 
minimize a project finishing time, according to 
priority relations, resource constraints, and a given 
job priority list. Operating with job priority lists, the 
constructed algorithm must enable us to find such 
job priority list which corresponds to an optimal 
solution of the problem. (1), (2). Determination of 
admissibility of the job priority list is detailed 
described in [19]. This determination is based on full 
priority relations’ matrix which describes all jobs 
which must be done corresponding to all chains of 
priority relations. 

2.3. The Serial Priority List Decoder 

This procedure computes the early starting moments 
of jobs, according to jobs’ priority list concerted 
with priority relations, and resource constraints. In 
schedules obtained in such way, none of jobs can be 
started earlier than calculated time, without break of 
priority relations or resource constraints. We can call 
such schedules active ones [13]. The algorithm for 
determination of the active schedule is also detailed 
described in [18], [19]. 

3. SCHEDULE OPTIMIZATION ALGORITHM 

BASED ON SIMULATED ANNEALING AND 

VARIABLE NEIGHBORHOOD 

3.1. Schedule Optimization Algorithm by the 

Method of Simulated Annealing 

Let’s consider simulated annealing (SA) algorithm 
based on the priority list and the serial decoding 
procedure [5], [18]. The main idea of algorithms such 
as SA, is the solutions’ generation methods and 
special rules for accepting new randomly generated 
solutions [14]. New solutions are generated from the 
current solution environment, while calculating the 
values of the objective function. Usually depth 
(radius) of environment is decreasing through 
optimization procedure, starting from the fixed value. 
In order to move from the current solution to a new 
one we apply Metropolis rule, which allows, with a 
certain probability, to accept solutions with a worse 
objective function’s value (accept worse solution with 

the probability )exp(p
k

*

t

)b(T)b(T −= , here )b(T  is 

current solution, )b(T *  - new solution). Theoretical 

recommendations for choice of appropriate 
parameters of SA in continuous optimization, that 
gain the algorithm’s convergence to global optimum, 
has been considered in [21], [21]. 

While constructing the SA algorithm for schedule 
optimization, we will consider two priority lists 
being neighbor if they can be obtained one from 
another by applying one elementary operation – shift 
or swap. These elementary operations with jobs in 
priority list are described in [19], [20]. 

3.2. Generating Random Depth of Solution 

Neighborhood 

Typical rules for regulation of the algorithm 
parameters are Neighborhood Depth ρk = ρ0 / k

α, 
Temperature Updating Function tk = t0 / k

β,  
0 < α,β < 1. We constructed special neighborhood 
depth generating algorithm, based on generation of 
stable Pareto values: 

Step 1. Set initial 1=:i  and 0=:S . 

Step 2. Generate U1 and U2, uniformly distributed 
in [0, 1]. Then calculate 
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(α = 0.5 or α = 0.75) 

ZS:S += . 

Step 3. If )(TfS ≥ , then i:k =ρ , else i:=i+1 and 

go to Step 2. Here )(Tf  - monotonically depends on 

temperature. 

Influence of the rules of such type on speed and 
exactness of convergence was discussed in the work 
by Yang [21]. 

Let’s write down the following SA algorithm: 

1) k = 0. 

2) Let is performed k steps of the algorithm. Let’s 
state that we have the priority list b where objective 
function value is Z1 = T(b). We set the step 
parameters ρk and tk.  

3) We randomly generate numbers q and l, l ≠ q, 
1 ≤ l, q ≤ n. With a probability p = 0.5, we perform 
whether the shift operation or the task swap 
operation. 

4) If the priority list obtained by such way is not 
feasible, then we repeat the step (3) until we obtain 
the feasible list. 

5) We repeat the steps (3) and (4) for ρk times. Let’s 
indicate the list obtained after performance of ρk 
feasible elementary operations by 'b . 

6) We calculate the objective function Z2 = T( 'b ) 
for the priority list by applying the serial decoding 
procedure. 

7) The priority list is being changed according to the 
Metropolis law:  

if η < exp((Z1-Z2)/tk), then bb =' . k = k+1. If 
k < kmax, then we repeat the step (2). 

4. PROJECT SCHEDULING PROBLEM 

LIBRARY PSPLIB AND APPLICATION FOR 

DESIGN 

This library [15], [16] contains different problem 
sets for various types of resource constrained project 
scheduling problems as well as optimal and heuristic 
solutions. The data sets may be used for the 
evaluation of solution procedures for single- and 
multi-mode resource-constrained project scheduling 
problems. The instances have been generated by the 
standard project generator ProGen. Researchers may 
download the benchmark sets to evaluate their 
algorithms, and they may send their results to be 
added to the library. The main parameters are given 
in the following sections.  

Kinds of solutions and instance sets, parameter 
settings, characterization of the benchmark instances 
are detailed described in [19], [20], [16]. There are a 
lot of RCPSP instances (input data sets, best known 
solutions) in the PSPLIB. More precisely, 480 
samples for every problem with n=30, 60 and 90 
jobs, and 600 samples for n=120. 

Benchmark Instances from PSPLib includes this 
project information: 

Number of jobs or tasks (including dummy) – 32, 
62, 92, 122. 

Horizon (total sum of all jobs‘ durations). 

Number of renewable resources (typically 4). Also 
can be nonrenewable, doubly constrained. 

Other project information – release date, due-date 
and other. 

Precedence relations – number of successors and list 
of successors (jobs‘ numbers) for each job. 

Jobs‘ durations and resource requests for each job. 

Resource availabilities for each kind of them. 

These instances were used for testing efficiency of 
the algorithms and such kind of projects we can 
usually meet in design. Of course, real-life single 
problem (big design project) can include thousands 
of jobs and their precedence relations, a lot of 
constrained resources. Testing algorithms’ efficiency 
with different problem sets from PSPLib can make 
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us sure that constructed algorithms will be able to 
find good solution for any other similar problem 
with another initial data. 

5. COMPUTATIONAL RESULTS 

5.1. High Performance Computing 

RCPSP are NP-complete and the solving is hard 
limited by available computer resources. Testing on 
a personal computer enabled us to solve tasks of the 
middle size, when dimensionality of real-life 
problems can exceed hundred or thousands tasks. 
Solving of large problems require the great number 
of iterations for each instance (5000-30000). Thus, 
the parallelization of the algorithm and computing in 
a high performance computer centre are necessary. 
A lot of applications show that heuristic methods 
inherently suits for parallelization and can easily be 
implemented in robust computer code. The 
parallelization strategy consists of sharing the 
computation of identical instances of problems 
among processors and using control processor to 
manage the adaptation of the sample size. 

The developed heuristic optimization algorithms are 
not able to solve real life problems with hundreds 
and thousands variables in a reasonable computer 
time.  Since the number of iterations and 
combinations of algorithms’ parameters needed to 
solve the problem by our approach with admissible 
accuracy are very growing, it was very useful to test 
our algorithms on parallel high performance 
machine. We wrote the parallel code for our 
algorithms using MPI. Searching solution for each 
instance data set from PSPLib were independent 
processes, so it was not difficult to run benchmark 
tests for all instances from PSPLib with the large 
number of iterations on different processors. These 
benchmark tests were performed in High 
Performance Computing centre CINECA, Italia. 
Technical details of this parallel machine - Model: 
IBM CLX/1024; Architecture: IBM Linux Cluster 
1350; Processor Type: Intel Xeon Pentium IV, 3 
GHz, 512 KB cache; Number of Processors: 1024; 
Nodes: 512 (2 proc. on node); RAM: 1 TB (2 GB on 
node); Disk Space: 5.5 TB; Operating System: 
Linux SuSE SLES 8; Peak Performance: 6.1 Tflop/s; 
Available compilers: Intel (F90,F77,C,C++), PGI 

(F90,F77,C,C++), GNU (F77,C,C++); Parallel 
libraries: MPI (mpich/gm); Queuing system: LSF. 

5.2. Computational Results of the simulated 

annealing with variable neighborhood 

The created algorithm of Simulated Annealing was 
explored by applying the method of statistical 
modeling while using data sets and known solutions 
from the library PSPLib. Comparison of testing 
results of the developed algorithm show that the 
developed algorithm allows effective solving of 
RCPS problems (Table 1). The testing results show 
that efficiency of the algorithm can be increased by 
appropriately regulating environment depth and the 
parameter of Pareto models. 

Table 1. Testing results of the simulated annealing 
with variable neighborhood. With n = 30, 60, 120, 
the tasks were performed for 1000, 5000, 10000 
iterations each. 

 1 2 3 

n = 30    

it = 1000 448 of 480 93.33 0.21 

it = 5000 476 of 480 99.17 0.08 

* it = 5000 480 of 480 100.00 0.00 

n = 60    

it = 1000 128 of 480 26.67 4.42 

it = 5000 376 of 480 78.33 2.46 

* it = 5000 480 of 480 100.00 0.00 

n = 120    

it = 1000 1 of 600 0.17 18.27 

it = 5000 52 of 600 10.83 7.62 

* it = 5000 511 of 600 85.17 2.34 

* it = 10000 587 of 600 97.83 0.81 

Table headings: 1 - Number of instances, when 
optimum or best known objective function value was 
found. 2 - Percentage of finding optimum or best 
known objective function value, %. 3- Average 
deviation from optimum or best known objective 
function value, %. 

Remark: with “star” (*) are marked benchmark 
tests’ results from high performance computing 
system. Also is given comparison to the results of 
early benchmark tests described with details in [4]. 



 

 571

6. CONCLUSIONS 

SA algorithm with Variable Neighborhood for 
optimizing schedules of jobs with resource 
constraints, based on schedule coding with the job 
priority list and the serial priority list decoding 
procedure were discussed in this paper 

Minimization of the objective function, while 
applying several dynamic environments’ depth 
adjustment methods, showed that change of solution 
environment’s depth allows us to accelerate 
convergence to global optimum.  

High performance computing using parallel 
algorithms lets us use very large numbers of 
iterations for problem’s instances and in such way 
during acceptable calculation time, ensure us about 
efficiency of created algorithms. 

While solving classes of various tasks, the 
developed algorithm proved his advantage at 
increased the number of iterations. In a case of 
separate practical tasks when there is no need to 
statistically compare a big amount of problems 
solutions, it is possible to increase the number of 
iterations again in order to find solutions as close to 
the optimum as possible. With increasing number of 
iteration convergence to optimum or best known 
objective function value can be achieved with high 
probability. 
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