
26th International Symposium on Automation and Robotics in Construction (ISARC 2009)

527

An Object-oriented Framework for Spatial Interpolation

Yo-Ming Hsieh1, and Mao-Sen Pan2
1Department of Construction Engineering, National Taiwan University of Science and Technology, No. 43,
Sec. 4, Keelung Rd., Taipei, Taiwan; PH(886) 2-2730-1056; FAX(886) 2-2737-6606;
e-mail: ymhsieh@mail.ntust.edu.tw
2Department of Construction Engineering, National Taiwan University of Science and Technology, No. 43,
Sec. 4, Keelung Rd., Taipei, Taiwan; e-mail: D9505503@mail.ntust.edu.tw

Abstract

Interpolation is an important operator in numerical methods for solving partial differential equations and
in geospatial applications. There are many interpolation methods proposed in the past. In this work, a
unified software framework is proposed through the use of design-patterns in object-oriented programming.
By using this framework, little effort is necessary to implement different interpolations algorithms when
commonality with implemented algorithms can be found. Furthermore, through this framework, it becomes
easy to compare the performance of different algorithms because of the unified application interface..

1. Introduction

Spatial interpolation has wide applications in the field civil engineering, e.g. solving PDE (partial
differential equations) and GIS (geographical information systems). Currently, there is neither standard nor
widely adopted API (application programming interface) for interpolation. As a result, it is necessary for
developers of aforementioned applications to implement their own interpolation operators or adapt their
applications to some developed codes. If ten interpolation methods is to be evaluated for understanding its
applicability or its performance, the developer suffers because they need to read 10 different documents,
they may have different data interfaces, and they may even conflict in names. Therefore, there is a dare need
for a standard interface for performing interpolation.

A software framework for interpolation is proposed in this work to unify implementations of different
interpolation algorithms. The unification is made possible by the use of encapsulation, inheritance and
polymorphism characteristics of OOP (object-oriented programming). The design is guided by design patterns,
a concept pioneered by Gamma(1991) to achieve low coupling between different classes.

It is believed the proposed software framework can potentially benefit developers of both 1) new
interpolation algorithms by encouraging code reuse; and 2) applications in need of interpolation by having a
unified interface to multiple interpolation algorithms.

2. Methodology

This study follows the flowchart shown in Figure 1. It is seen in the flowchart that this study consists the
following steps: survey, common feature extraction, core class design, system interface design, and
evaluation.

First step of this study was a survey of interpolation methods interested. In this survey, few methods for
interpolation commonly used in solving PDE were included. These methods were selected solely because
these were needed by other studies in author’s research group, but authors believed the generality of the
proposed software framework should not be affected much by the limited scope of the survey.

Common procedures and requirements were then analyzed and extracted from the surveyed
interpolations algorithms. This step is necessary in order to identify necessary common function call
interfaces and common data interfaces. This step contributes to the design of a general software framework
that unifies the implementation of interpolation algorithms.

From the identified common requirements between interpolation algorithms, abstract core classes were
then designed. The abstract core classes define the common interface, including both data interface and API
interface, for implementing interpolation algorithms. The data interface was carefully designed with great

Information and Computational Technology

528

generality to ensure it satisfies all the needs of surveyed algorithms; the API interface or class collaboration
were designed with aids from design patterns to lower the coupling between classes in order to maximize
extensibility while minimizing changes needed when adding new algorithms.

In order to make the framework for interpolation easy to use for application developers, a wrapper class
or system interface class is then designed to wrap up the above mentioned core classes to provide a simple to
use application interface for application developers. More details about the system interface class are given
at later paragraphs.

Once all classes were designed, the designed classes were validated and evaluated by implementing
surveyed algorithms in order to make sure these classes: 1) can implement all the surveyed methods, and 2)
encourage good code-reuse.

Figure 1: The overall flowchart of this study

3. Core Interpolation Framework

Before the proposed software framework is described, interpolation is first defined. In this work, spatial
interpolation is defined as an evaluation of a quantity of interest at a given spatial location based on the
quantities of the same type that exists on a set of known points.

Based on surveyed interpolation algorithms, it was determined the evaluation of one interpolation
operation often involves evaluations of: 1) weighting, which controls the how influential each known point is
to the point of interest; 2) basis function, which controls how the quantity to be evaluated is distributed
continuous in space; and 3) neighboring points, which finds surrounding points for a given point.

Accordingly, four abstract classes were designed to define interfaces for the aforementioned four
evaluations. These classes need to be derived or “sub-classed” to define concrete implementation of these
evaluations. The collaboration of these classes is shown in Figure 2, and is discussed in the following
paragraphs.

The interpolation class is the main “driving” class for performing interpolation. Applications in need of
interpolation will create a concrete object derived from this type. This interface class defines the common
interface for initializing data required to perform interpolation and performing interpolation for all
interpolation algorithms. Figure 2 shows an example of implementing MLS (moving least square, Lancaster
and Salkauskas 1981) interpolation algorithm. The MLS class is a concrete class inherited from interpolation
class, and the concrete class overrides data initialization method and provides an implementation of MLS
interpolation algorithm. In a way, the interpolation class is similar to a template class that defines the
collaboration between weightFunction, basisFunction, and searchAlgorithm abstract classes. The class itself does
not assume or use any concrete class. Therefore, this design ensures great extensibility or flexible for
implementing interpolation algorithms. Furthermore, if a particular interpolation method does not use
weightFunction, basisFunction, or searchAlgorithm classes, the implementer can simply ignore references to the
aforementioned three abstract classes and use only the defined interfaces by interpolation class.

26th International Symposium on Automation and Robotics in Construction (ISARC 2009)

529

Figure 2: Class collaboration for performing interpolation

The weightFunction class, similar to the interpolation class, is an abstract class that defines universal interface

for determining weights of existing points with known quantities to the point to be interpolated. There were
many weighting functions proposed in the past, e.g. Liu(2003), Li et al(2004). If a weighting function is to be
implemented based on the proposed framework, they need to sub-class the abstract weightFunction class to
ensure that they can be easily incorporated or “bridged” into any interpolation algorithm.

The basisFunction class defines the common interface for basis functions (also known as interpolation
function, shape function, kernel function, etc.), such as polynomials and radial basis functions (Liu 2003; Liu
and Gu 1999; 2001; 2005; Wang and Liu 2000). Any implementation of basis function evaluation needs to
sub-class from basisFunction class and implements the virtual functions for calculating local interpolation.

Finally, the searchAlgorithm class is a helper abstract class for searching a specified number of neighboring
points from a given set of points. It is considered as a helper class because interpolation algorithms usually
do not concern how to find neighboring points, but most interpolation algorithms do need to find
surrounding points for a given spatial location. It should be noted the efficiency of search algorithm tends
to dictate the interpolation efficiency, and efficient search algorithms is necessary in order to get performing
interpolations.

Two design patterns, bridge and strategy, were used in the design of class collaborations shown in Figure
2. The bridge design pattern “decouples abstraction from implementation so that implementation and abstraction can be
varied independently” (Gamma et al. 1995). Derived classes of interpolation are to be implemented by using
abstract interfaces of other three classes that are aggregated to the interpolation class. Therefore, any concrete
implementation of interpolation can use any combination of concrete classes derived from weightFunction,
basisFunction, and searchAlgorithm. Furthermore, the interpolation class itself is an abstract class, which can be
refined further to develop yet another abstract class if desired.

The other design pattern applied in the design is the strategy design pattern. The strategy design pattern
is a behavior design pattern that allows algorithms to be swapped at runtime. This is achieved by defining a
virtual function that needs to be implemented by all sub-classes of abstract core classes such as interpolation,
weightFunction, etc. Therefore, applications are allowed to choose which concrete sub-classes of weightFunction,
basisFunction, and searchAlgorithm are to compose the interpolation class.

The core interpolation framework benefits developers of interpolation algorithms. With loose-coupling
between concrete classes, it is easy to reuse existing classes and vice-versa. Efforts of implementing new
interpolation algorithms that shares common weight functions or basis functions can be reduced. By using
the framework, many different interpolation algorithms can be implemented by different composition of
weighting, basis, and interpolation classes. On the other hand, the implementation of search algorithm
dictates the efficiency of interpolation and should not be overlooked.

4. Interface Class

The core interpolation framework benefits developers for interpolation algorithms by encouraging code-
reuse with well organized program structure. However, to ensure the maximum flexibility of the framework,
it was decided that instantiation of concrete classes in the core framework is the responsibility of the
program which uses the framework. This may be inconvenient for application developers who solely want

Information and Computational Technology

530

to perform interpolation without knowing too much detail regarding interpolations. Therefore, an interface
class following the “Façade” design pattern is designed to ease the use of core interpolation framework.

Figure 3 shows the composition of this interface class with the core interpolation framework. The
interface class is responsible for instantiating concrete classes of interpolation, weightFunction, basisFunction, and
searchAlgorithm, and then initializes each of these classes properly. One of the most important responsibilities
of this class is to make sure the “right” concrete classes of weightFunction, basisFunction, and searchAlgorithm are
assigned to the concrete interpolation class.

Figure 3: Interface class for the core interpolation framework

By introducing the interface class, application programs only need to know and use the interface class

without knowing it is supported by four classes (interpolation, weightFunction, basisFunction, and searchAlgorithm).
Therefore, the interface class benefits application developers who need simple interpolation operations
without knowing details of interpolation algorithms.

5. Evaluation

The designed software framework is evaluated from two perspectives: interpolation algorithm developers
and application developers. For interpolation algorithm developers, the framework should reduce the effort
of programming; for application developers, the framework ought to provide easy-to-use interfaces.

Figure 4 shows the benefit of the software framework for interpolation algorithm developers. Assuming
an implementation for interpolation method A has been completed, as in Figure 4(a). One may create
another interpolation method B, as in Figure 4(b), by 1) implementing a new concrete basisFunction class and
2) creating another concrete interface class that aggregates new basisFunction class with old concrete weight
interpolation, and searchAlgorithm classes. Similarly, different interpolations can be realized by substituting
weight functions, as in Figure 4(c). Other interpolation methods are possible by using the same weight and
basis functions but different interpolation procedures, Figure 4(d). Finally, if one is unsatisfied with the
performance of interpolation, he or she may try to improve the performance by introducing better search
algorithms, as in Figure 4(e). This great flexibility or extensibility is attained by encapsulation and inheritance,
two important characteristics of OOP.

Figure 5(a) shows the ease of maintaining interface class. User can also define the interface class himself.
Basically, once a new interpolation algorithm is implemented, a new interface class is added by 1)
programming constructor to instantiate four concrete classes of appropriate combination; and 2) writing an
inline method that calls to the calculation method of the concrete interpolation class. It may be noted that
identical combination of core interpolation classes with different “default” parameters may be programmed
into a different interface class with different parameter list under the same method name – an example of
using polymorphism.

26th International Symposium on Automation and Robotics in Construction (ISARC 2009)

531

(a) Assuming interpolation method A has been completed

(b) New interpolation algorithm with new basis function

(c) New interpolation method with new weight function

(d) New interpolation method by new interpolation procedures

(e) Gaining better interpolation efficiency by implementing efficient search

Figure 4: Benefits for interpolation algorithm developers

Figure 5(b) shows the effort required for application developers who need performing interpolation,

assuming core interpolation classes have been implemented and bundled as a class library. It is seen that the
effort involves 1) preparing data, 2) instantiating a concrete interface class, and 3) calling the calculation

Information and Computational Technology

532

method of the interface class. These efforts are necessary regardless the practice of programming.
Therefore, it is considered by authors that the design of the interface class is essential to help application
developers who do not concern about details of interpolation algorithms.

Figure 5(c) shows the ease of switching to different interpolation algorithms using the interface class.
This is sometimes necessary because application developers do not necessarily know beforehand which
interpolation algorithm suits his application the most. By changing one line of code, which calls to the
constructor of a particular constructor of a concrete interface class, the interpolation algorithm can be
completed altered – achieved through inheritance.

(a) Maintenance of interface class

Figure 5: Benefits of proposed framework for application developers

//====================//
// Interpolation interface header //
//====================//

//In this area include necessary header file. (interpolation method, weight function …)
#include <xxxx.h>
…

enum WeightType {_noWeight, _weight1=1, _weight2, … };
enum BasisType {_noBasis, _basis1=1, _basis2, …};
enum SearchType {_noSearch, _search1=1, _search2, …};
enum InterpolationType {_noInterpoaltion, _interpoaltion1=1, …};

class InterpolationInterface {
protected:

//basic field parameters
int dimension;
…

WeightFunction *weightFunction;
BasisFunction *basisFunction;
SearchAlgorithm *search;
Interpolation *interpolation;

void createInterpolation(InterpolationType IT);
void createWeight(WeightType weight);
void createBaseFunction(BasisType base);
void createSearch(SearchType search);

void InterpolationBuilder();

public:

// step 1. Constructor and Destructor
InterpolationInterface(basis parameter1, basis parameter2, …);
~InterpolationInterface ();

// step 2.User select one of below method to build interpolation object.
void create(parameter1, parameter2, …); //create by advance user
void createInterpolationAlgorithm1(); //default method
…

// 3. User use this function to calculate and get interpolation result.
void calcField(calc parameter1, calc parameter2, …);

};

//Enumeration all types methods for weight,
basis, search, and interpolation methods. It
needs to update enum parameters if new
algorithms be added.

//Programming maintainer use these pointer to get
default or selection algorithms objects.

//Programming maintainer use these functions to realize
objects. These Functions get parameter which selected
from enumeration types, then create objects. It also needs
to update if new algorithms be added.

//Combining appropriate algorithms in this function.

//Programming maintainer provide
interface for user create interpolation.
User can use default method function
to create easily or give selection
parameters by advance function to
create.

6. Applica

The int
interpolati
for variou
processing

Figure
different a
boundarie
evaluation
own purpo

7. Summa

A softw
programm
of unifying
of interpo
application

//

//

//

//

//

//

26th Internat

Figure 5

ations

terpolation lib
ion algorithms
s purposes su
g analysis resu
6 shows inter

algorithms ma
es, etc. Theref
ns of various in
ose.

(a) Least-Sq
Figure

ary

ware framewo
ming and well-
g all implemen
lations by pro
n developers b

/ step 1: creating u
InterpolationI

/ step 2: choosing o
myInterpolatio

/ step 3: calling the
myInterpolatio

/ step 1: creating u
InterpolationI

/ step 2: choosing o
myInterpolatio

/ step 3: calling the
myInterpolatio

tional Symposiu

(b)

(c) Ch
5 (cont’d): Ben

brary develope
s for stress int

uch as solving
ults for produc
rpolations of h
ay produce dif
fore, it is nece
nterpolation a

quare
6. Different s

ork for implem
known design
ntations of int
oviding great e
by the ease of

use of interface cla
Interface *myInt

one of style metho
on -> create(Interp

e calculation meth
on -> calcField(ca

use of interface cla
Interface *myInt

one of style metho
on -> createInterp

e calculation meth
on -> calcField(ca

um on Automati

Use of int

hanging interp
nefits of prop

ed based on th
terpolation in
partial differe

cing contours,
horizontal stre
fferent results
essary to have
algorithms to f

(b) M
stress-distribu

menting interp
n patterns. Th
terpolation alg
extensibility, g
f use and ease

ass
terpolation = new

d for building inte
polationAlgorithm

hod of use interface
alc parameter1, cal

ass
terpolation = new

d for building inte
polationAlgorithm

hod of use interface
alc parameter1, cal

ion and Robotics

533

terface class in

olation algorit
osed framewo

he described f
excavation an

ential equation
, etc.
esses produce
due to differe
the proposed
find the most-

Moving Least-S
utions by diffe

polation algori
he framework
gorithms. The
good code-reu
of switching t

InterpolationInte

erpolation object.
m1, basis1, weight1

e class.
lc parameter2, …);

InterpolationInte

erpolation object.
m1();

e class.
lc parameter2, …);

s in Construction

n applications

thms in applic
ork for applica

framework wa
nalyses. These
ns using mesh-

d by an excav
ences in algori
d interpolation
-suitable inter

Square
erent interpola

thms is propo
is considered
e proposed fra

use and code-m
to different alg

erface(parameter1

1, search1);

;

erface(parameter1

;

//Switchi
interpola
change c
step2.

n (ISARC 200

cations
ation develope

as applied to ev
e interpolation
-free methods

vation analyses
ithms, proxim

n framework to
polation algor

(c
ation algorithm

osed based on
general and s

amework ben
management; i
gorithms.

, …);

, …);

ing to different
ation algorithms ju
creation function of

09)

ers

valuate variou
ns are necessa
s and post-

s. It is seen th
mities to

o assist
rithms for one

c) PIM
ms

n object-orient
should be capa
efits impleme
it also benefits

us
of

us
ary

hat

e’s

ted
able
nters
s

Information and Computational Technology

534

Acknowledgement

This work is partially supported by NSC 95-2221-E-011-110 of National Science Council of Taiwan.

References

[1] Gamma, E. (1991). “Object-oriented software development based on ET++: design patterns, Class
Library, Tools.” PhD thesis, University of Zurich Institut für Informatik.

[2] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). “Design Patterns Elements of Reusable
Object-iented Software.” Addison-Wesley, USA, ISBN 0-201-63361-2.

[3] Lancaster, P. and Salkauskas, K. (1981). “Surfaces Generated by Moving Least Squares Methods.”
Math. of Comp., 37(155), 141-158.

[4] Li, H., Wang, Q. X. and Lam, K. Y. (2004). “Development of a novel meshless Local Kriging
(LoKriging) method for structural dynamic analysis.” Comp. methods in Appl. Mech. And Engrg., 193,
2599-2619.

[5] Liu, G. R. and Gu, Y. T. (1999). “A point interpolation method.” Proceedings of 4th Asia-Pacific
Conf. on Comp. Mech., Singapore, 1009-1014.

[6] Liu, G. R. and Gu, Y. T. (2001). “A point interpolation method for two-dimensional solids.” Int. J.
Muner. Meth. Engng, 50, 937-951.

[7] Liu, G. R. (2003). “Mesh Free Methods – Moving beyond the Finite Element Method.” CRC Press,
ISBN 0-8493-1238-8.

[8] Liu, G. R. and Gu, Y. T. (2005). “An introduction to meshfree methods and their programming.”
Springer, ISBN 1-4020-3228-5.

[9] Wang, J. G. and Liu, G. R. (2000). “Radial point interpolation method for lastoplastic problems.” Proc.
of the 1st Int. Conf. On Structural Stability and Dynamics, Taipei, Taiwan, 703-708.

