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Abstract

Pavement maintenance requires knowing the statbeofoad surface. Human inspection is

the most common method for evaluating this stagzeRtly, the automated visual inspection

has been addressed, but some important questiomsinreopen concerning the variable

ambient lighting, shadows, device synchronisatiod #he large amount of data. In the

present paper, an automated visual inspectionmyist@resented. Images are obtained using
laser lighting and linear cameras onboard a vehladagitudinal and transversal cracks are
detected and classified using a novel approachdbasecombining traditional features and

Gabor filters. A Differential Global Positioning &gm (DGPS), a web camera and an
Inertial Profiler to measure the International Roogss Index (IRI) are also considered in
order to obtain comprehensive information aboutrtbed state. Implementation details are
given concerning image acquisition and processisgstem architecture and data

synchronisation. Field results are presented wpiolkie the suitability of the approach.
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INTRODUCTION

Road clearly plays a predominant rule in passengaisgoods transport. In 2006, passenger
cars, powered two-wheelers and buses and coackesrded for 83 % of total passenger
transport in the twenty-seven member state Europaon (EU-27), as it was reported by
the European Commission (2009). Also, 46% of tgtadds transport is carried out by road.
This huge load of vehicles using the road dailg, weather and the environmental conditions
cause road deterioration and subsequent loss gkgres of the pavement. This causes a
number of serious drawbacks for users: reduced sedty, decreased travel comfort,
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increased fuel consumption consequently increasghliting gases emission. Therefore,
getting an adequate level of service of the road/ordx becomes a priority.

Pavement maintenance requires the knowledge ofsthe of the road. Human visual
inspection of the road surface is the most commethaod for evaluating this state, but it
does not cope with the required deterioration eatédu reliability, repeatability, speed and
robustness. The human visual system has a grday abiadapt to new and variable tasks.
However, the same state of the road may be cledsifi a different way by two different
workers, due to the inherent human subjectivity &sial fatigue. Some semiautomated
survey systems, working in post-processing mode aeguiring substantial human
interaction, have also been used. (Wang, 2000).edew in most cases a manual labour is
still required for collecting crack data.

In this context, INO’s Laser Road Imaging SysterRkR) emerged as an efficient system to
acquire quality images of the road. Indeed, manseaechers have paid attention to
automated pavement distress detection using imagkysas and machine vision techniques.
Kim et al. (2006) evaluated the crack sealing pemamce by image processing. Also, Chang
et al. (2007) developed an autonomous robot fockcraspection. Zhaoyun et al., (2009)

proposed an algorithm to identify pavement cragi@umorphological method.

However, variable external lighting conditions astthdows prevent common thresholding
techniques from working successfully, and efficiearack detection remains an open
challenge. In the present paper, an approach éodétection of cracks using Gabor filters is
proposed. A group of these filters can distinglstween different kinds of image groups,
but the significance of filter parameters is unci&anconi and Fernandez, 2007).

Moreover, pavement inspection is not simply a mmatfeacquiring images and designing
image processing algorithms. Information aboutgheement state could be enriched by the
integration of other devices. A DGPS is used tovigh® accurate position of detected cracks.
A web camera is employed to provide informatiorihaf location. An Inertial Profiler is used
to measure the IRI. Details of these devices andyihichronisation using an encoder will be
also discussed.

The rest of the paper is organised as follows.tFtle system architecture is presented,
addressing the synchronising problem. Then, theriktgns proposed for improving the

image quality and detecting and classifying cracken Gabor filters are explained. The
results and conclusions are finally given.

SYSTEM ARCHITECTURE

A wide variety of devices are set up in the vehioleorder to acquire the required
information. An imaging system is used for acqugrimad images. An Inertial Profiler is
used to measure IRI, derived from longitudinal pesf of pavement. These longitudinal
profiles and the IRI give extra information of thead state. A web camera and a DGPS
provide accurate position of the vehicle and imagfate road, respectively. Two computers
are used for controlling the device, storing datd processing this data offline for obtaining
information about the road state. Finally, all #neevices are synchronized using an encoder
attached to a wheel. Setup details are seen ind-igu
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Figure 1: Road Inspection Vehicle. LRIS, a DGPS, a webcam, an encoder and an inertial profiler have
been integrated into the vehicle.

In the present section, first, the encoder andatag the rest of the devices are synchronised
are explained. Then data acquisition devices aserited.

Devices synchronisation using an encoder

An incremental encoder is used to synchronise tfierent devices of the system. It gives
5,000 pulses each wheel turn, which means 1 puksgy éime the vehicle advances 0,33 mm.

Every device must start and stop the data acquisdt the same time. This is achieved by
starting all the system devices without powering ¢éimcoder. When all the systems are ready
to start acquiring data, then the encoder is pasverg thus providing the first encoder pulse
at the same time to all devices. Analogously, axtjan is stopped by powering off the
encoder, so all devices receive the last puldeeasame time.

Each device must take a single data every a givenber of encoder pulses. The inertial
profiler uses the normal encoder signal, but ietallata at the laser frequency, so it uses the
encoder signal to position the data acquired. LRit§uires a transverse line image of the
road every time a pulse is received. A frequeneisdr has been used in order to generate a
pulse every 3 pulses of the encoder, so that omeevery 1mm is acquired. The DGPS and
the web camera give a data every 5000 pulses.@uwdfd allows pulse counting and sends a
signal to the software every 5000 pulses. Whendigisal is received, the web camera takes
an image and the position given by the DGPS isca&eproper interface software has been
also developed, that allows the user to analysthelstored data from the devices.

Imaging system

In order proper images of the road surface to lygliaed, the cameras should provide high
enough data acquisition and transfer speed satliaincoming light integrated during the

short exposition times is enough to produce sigarft output values. The use of matrix
cameras could be considered. However, linear carageapreferred because their acquisition
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speed is higher and uniform and high-power lightsnmnore easily achieved along a line than
throughout a 2D area. Suitable lighting is alsaunesgl to obtain high quality images. Most
usual lighting sources are halogen lamp, Light EngtDiode (LED) and laser. Halogen

lamps require high energy so they are not fullyrappate for on-board systems. LEDs have
better power efficiency than halogen lamps, butssafficiency than lasers. Moreover, laser
lighting requires high quality manufacturing aligent with the linear cameras.

Based on these considerations, semiautomated ignagstems have been developed and are
available on the market. Automatic Road AnalyzeRAN), developed by from Frugo-
Roadware, uses digital frame cameras and syncleasisobe lighting and stores the images
for post-processing by the WiseCrax software. Thghitays Agency Road Research
Information System (HARRIS) applied three line s@ameras and halogen lighting. The
pixel resolution is about 2 mm and can operategpabwB0 km/h with a covering width 2.9m.
Automatic processing of these images is then chwoigt in two stages. First, a processing
step to clean and reduce the images and thenehéfidation of cracks is carried out.

INO’s LRIS consists of two high-resolution lineaanseras and two lasers to image 4m
transverse road sections. The line size obtainédRi® is 4096 pixels and 28000 lines every
second, which allows 1mm resolution at speeds ¢hat reach 100 km/h. The system is

designed to increase the contrast and visibilitypboth longitudinal and transversal road

cracks. Using high power laser line projectors vativavelength of 825nm, it can operate in
full daylight because it is immune to variationsauatside lighting conditions and shadows.

The incident illumination angle causes the crachsptoject shadows, so the visual

appearance of the cracks is usually darker thamahnmal road surface. LRIS achieves our
requirements of acquisition speed, resolution imageé power consumption. In the present
work, this system has been selected and integnatéet vehicle. Images are processed using
specific software we have developed upon the matpoopbosed in the next section.

Inertial Profiler

The International Roughness Index (IRI), derivemhfriongitudinal profiles of pavement, is
measured by an Inertial Profiler. The selected mgent is the LaserProf from Greenwood
Engineering. LaserProf has a laser, an inertiad@eran encoder coupled to the wheel, and a
control system to integrate all the data. It rumnsl@ kHz update frequency, so that a
longitudinal profile resampling interval of 1.39mmachieved at 80km/h.

The longitudinal profile offers extra informatiom@ut the state of the road. The IRl is the
roughness index determined by applying a mathealattodel, which has the dynamic
response of a simulated response-type road roughmessuring vehicle along a single
wheel-path of measured road profile. The IRI isregped in terms of accumulated vertical
displacement of the simulated suspension in meeesneasured kilometre. This information
has been incorporated to our system to increasaftbrenation about the state of the road.

Differential Global Positioning System

A DGPS gives an accuracy measurement of the positicghe vehicle. This measurement is
taken every 1,7 meters and is triggered by the d@rcdSo the system gives the exactly
location of every crack.
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Web camera

A web camera has also been installed in the velmctader to obtain a video of the road.
Each frame of the video is taken every 1.7 metarst is independent from the speed of the
vehicle. The encoder also triggers the acquisitibeach frame.

PROPOSED INSPECTION PROCESS

The design of an automated visual inspection systenst consider three basic steps:
preprocessing, segmentation and classification. pfbposed approaches for these steps are
presented in this section. First, a preprocesdig t® correct the measured brightness levels
along the images is presented. Segmentation digwsitare then used to separate crack
regions from the rest of the image. A novel methmdinalysed images is presented. It is
based on applying a segmentation algorithm taréittemages by Gabor filters. Crack regions
are then classified into two groups: transverseksand longitudinal cracks.

Correction of measured brightness levels

At the beginning of the process, the gain and #posure time of every camera is adjusted
individually to a 128 average grey level (the cendf the O to 255 range). Nevertheless,
brightness measured along a given line is not eohstue to the fact that the lighting and
viewing conditions are not exactly the same at yvmint. In order to correct existing
differences, the following process has been deweelopvery time a new image is transferred,
the average pixel value for each column is recated to adapt to the sheet reflection
changes. This is carried out using:

|
Ii; :128% i=12,...,.M j=12,..,N
A

A= A+ (l-a)al i=12,..,M (1)
where a = ,8%

lj is the pixel value of the original image at columand the rowj, andl’;; is the transformed
image pixel valueM is the number of columns of the imadgéis the number of rows of the
image and is the number of the image. MoreovAf is the weighted average pixel value of
columni afterk images and is the average pixel value of colurhrior imagek. a is a
weighting variable ang is a constant to control the weight of the nearesasurements,
which can be set to about 0.7bapproacheg whenk approaches infinite, in our case 0.75.
An image acquired by LRIS and the correspondingoqmeessed image by the algorithm
developed can be seen in Figure 2.
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(a) (b)

Figure 2: (a) Image acquired by LRIS. (b) Preprocessed image.

Segmentation of filtered images by Gabor filters

In the segmentation phase the pixels of an imagegaouped. Usually, when detecting
defects over a homogeneous surface is lookedHerimage is segmented into two groups:
normal surface (background) and defective surfémeg@round). A natural way to segment
an image is through thresholding techniques. Alefa with grey level values greater than a
given one are assigned to one group and the remthdther one. Most of these techniques
indirectly use the shape information of an imagstdgram. The ideal case is a bimodal
shape, because the grey level at the valley cadirbetly selected as a suitable threshold
value. However, usually bimodal histograms arefoond in real applications.

Measured grey level of cracks is usually darkentharmal surface, but the differences are
not as great as would be desirable. Some sampteg #iresholding application on images
from LRIS system, where this issue is highlightedn be seen in figure 4. So, a more
reliable, robust and less sensitive to noise atehsgity variation method should be used.

Many works suggest that analysing images in theiageequency domain instead of the
spatial domain can be advantageous. Fourier metkbdsacterise the spatial-frequency
distribution but do not consider the informationtive spatial domain. Gabor filters are well
recognised as a joint spatial/spatial-frequencyaesgntation for analysing images containing
specific frequency and orientation characteris(iBsyik et al. 1992).

A two-dimensional Gabor filter consists of a sindsb wave modulated by a Gaussian
envelope. The filter performs a localised and dednfrequency analysis of a two-
dimensional signal. The spatial domain formulai®n

G, rs(%Y)=0,(xYy)lexdj2nF X)

where g, (x,Yy) = m % ( J (2)

’

with X' =xcosf + ysind and -Xsing + ycosH
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X, y are the spatial coordinatdsjs the central frequency,is the angle between the direction
of the sinusoidal wave and the x-axis, aRdndo, are the smoothing parameters (standard
deviations of the Gaussian envelope in the diraaticthe wave and orthogonal to it).

A group of filters selected in such a way that tleay distinguish between different kinds of
image groups is called Gabor filter bank. The desifjthe filter bank consists of selecting a
proper set of values for the filter parametdfs®é, o andoy. The systematic design of a
proper Gabor filter bank has been widely studiad, the solution always depends on the
specific application.

Once the bank of filters is selected the imagesfiiezed. To compute the filtered images,
the full image is divided into fixed size pieced2%512 for the developed system) with the
necessary overlapping to cover the entire image. cimvolution theorem is applied to these
pieces in the following way:

(. y) =1 (% Y) 06(x, ¥) = 07(1 (u,v)G(u,v)) 3)

Wherel represents the imag8, the filter, I the filtered image anB™ is the inverse Fourier
transform. It should be noted thatis a complex image where the real part, imagineny,
magnitude and phase can all be used to segmemaye.

Two filters have been used in this work. The cdrtejuency and the smoothing parameters
are the same for both of them, while the orientaisodifferent. The central frequendy, has
been set up to 0,025 pixélthe smoothing parameter has been set up to 9,64 pixels and
has been set up to 37,68 pixéldras been set up to 0 degrees and 90 degreestresiyec

A transverse and a longitudinal crack and therélteimages by the two Gabor filters used
can be seen in Figure 3. Real and imaginary pagnimude and phase of the filtered images
are shown. It should be notice that the filtereéges are normalised in order to see them,
representing in black the smaller values. In feet, values of the pixels of real and imaginary
part are real numbers. (i.e., (g) pixel values lzatveen —20.85 and +9.5), the magnitude
values are positive values and the phase valudaa degrees from —180 to +180.

Real part and magnitude seems to be the most kuifab our purpose. An appropriate
threshold has to be selected in order to segmemage. In Figure 4 the segmentation result
for two transverse and two longitudinal crack canseen, applied to the real part and the
magnitude, and is also compared to a common thigisigooutput. The pixels selected in the
thresholding technique are those ones whose vahadswer than 85. It can be seen that a lot
of noise is present in the segmented image. Filjeiechniques should be applied to remove
the noise, which could cause the elimination ofdteeck. Moreover, for some cracks, like in
(N, it is not possible to detect this kind of dtaausing this technique. When a thresholding
technique is applied to the real part or to the mtadge, the cracks are finely detected and the
noise is almost removed. For the real part twosthokl values, upper and lower, are applied.
It has been chosen —10 and +10 respectively. Aremippeshold of 10 has been selected for
the magnitude. There is no relevant differencehia tesults for both options. Since the
magnitude phase only uses one limit, it resulta more homogeneous and robust result. So,
the magnitude of the filtered images is finallydise
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Figure 3: (a) and (f) are two cracks images acquired by LRIS system. (b) and (g) are the real part of
the filtered images by two Gabor filters, (c) and (h) are the imaginary part, (d) and (i) the magnitude,
and (e) and (j) the phase.
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Figure 4: (a) and (e) are transverse cracks, (i) and (m) are longitudinal cracks. (b), (f), (j) and (h) are
the corresponding thresholded images by a typical technique. (c), (g), (k) and (o) is the thresholded
real part filtered image and (d), (h), (I) and (p) for the magnitude.

Crack classification

The pavement cracks are classified into transvaemsilongitudinal cracks. The segmentation
technique, described in the previous section, plewitwo binary output images. Transverse
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cracks are highlighted in one of them, and longitaldcracks in the other one. Each of these
images is analysed independently. Adjacent pixetsesponding to cracks form groups and
nearby groups are joined to form a single defelis processing allows the number of cracks
to be counted up, and the features of these ctacke calculated. This process is applied to
both binary images independently, so the crackectiedl in every binary image belong to
transverse o longitudinal cracks respectively.

RESULTS

Once the image data is processed we obtain aetbtaidp of the state of the road. Classified
cracks are shown and located. Information abow atnount of cracks, its type, and the
environment where the crack is located is also shdi®l measurement of any road section
can be obtained. It could be possible to see tta¢ itdformation acquired by the system, but
the amount of data stored is too high. Using tlee@ssed data drastically reduces the storage
requirements while preserving all the required infation. Some screenshots of the interface
software developed in this work can be seen inreigu

Sistema de Inspeccion Automatico de Carreteras ﬁ —

®)
Figure 5: Developed interface to display data: (a) Processed image data, (b) Map of defects, its
features and state of the road.

CONCLUSIONS
In the present paper a new system for detectingclssifying cracks in the road is exposed.

It is based on the application of two Gabor filtensthe entire image. The results obtained by
the application of traditional thresholding techreg have been improved.
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Different devices and its synchronisation have batso explained. These devices give
additional information of the state of the roadgfusfor pavement maintenance.
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