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Abstract 

The process of generating optimized schedules for construction projects is a very time-consuming. For 
each construction task several execution restrictions, conditions and requirements such as technological 
dependencies or resource availabilities have to be considered. This leads to a multitude of possible execution 
orders and consequently to a hard optimization problem. Within this paper the integration of a flexible 
Simulated Annealing metaheuristic into a constraint-based simulation concept is presented to determine 
optimized construction schedules. Simulated Annealing approximates the optimized solution by defined 
temperatures and cooling rates. Both parameters help to define the search process and respectively help to 
escape from local minima. In the following the Simulated Annealing approach and its implementation are 
described in detail. Furthermore, the application of Simulated Annealing is demonstrated using an example 
from construction scheduling. 

Introduction 

Scheduling the execution processes for a construction project is a challenging task. Resources such as 
machines and employees, as well as spatial restrictions of the construction site, must be considered in the 
scheduling of construction tasks. Additionally, the site layout changes during processing, which requires 
material and transport flows to be adapted. All-in, the execution flow is influenced by a multitude of 
different process and project requirements that have to be considered in detail during the planning phase. 
This leads to a multitude of execution sequences. Considering the project objectives, like the minimization of 
the total execution time or costs, an eligible alternative has to be generated and selected. 

Simulation models are successfully applied within the manufacturing industry to improve production 
flows. The efficiency of production facilities, local plants or specific production lines can thereby be 
evaluated, and material flows as well as employee utilizations can be optimized. The application of simulation 
models is also a promising approach for planning various processes in the construction industry. Simulation 
enables users, for example, to visualise material flows, to localize manpower bottlenecks or to run what-if 
scenarios. Due to the fact that simulation applications in the manufacturing industry only support static 
layouts, a dynamic and flexible simulation approach is required to describe complex construction processes. 

Within the research collaboration SIMoFIT (Simulation of Outfitting Processes in Shipbuilding and Civil 
Engineering) a constraint-based simulation approach was developed to improve execution scheduling of civil 
engineering and the shipbuilding industry (König et al. 2007). This approach allows, process and project 
conditions as well as current as-is states to be easily integrated by defining or removing constraints. During a 
simulation run the fulfillment of constraints is continuously checked and therefore only valid execution 
schedules are generated (Beißert et al. 2007).  

The Simulated Annealing approach is integrated into the constraint-based simulation concept in order to 
calculate optimized schedules. Constituting on an initial schedule Simulated Annealing attempts to improve 
neighboring schedules by task substitution. Once an improved schedule is determined, the new solution 
replaces the current solution. Simulated Annealing enables declined solutions to be accepted in order to 
escape from local minima. The procedure and its consideration within the current simulation concept are 
presented within this paper in detail. Finally, a case study looking at the scheduling of several finishing trades 
is presented to evaluate the Simulated Annealing approach. 
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Constraint-based Simulation 

Construction scheduling problems can be described by constraint satisfaction which is a powerful 
paradigm for modeling complex combinatorial problems (cf. Blazewicz et al. 2007). Classical constraint 
satisfaction problems are defined by sets of variables, domains and constraints between the variables (Rossi 
et al. 2006, Kumar 1992). Accordingly, when modeling the construction scheduling problems as constraint 
satisfaction problems, the construction tasks, material, employees, equipment, and the construction site 
layout are represented by variables. Subsequently, different scheduling constraints can be specified between 
these variables. These constraints have to be satisfied before the associated construction task can begin. 
Some typical construction constraints are formalized in Beißert et al. (2007) and shown in Table 1. 

 
Table 1: Typical constraints for construction scheduling 

Construction constraints 
• Technological dependencies 
• Capacity, e.g. of equipment, employees 
• Availability, e.g. of material 
• Spatial aspects, e.g. safety or working areas 

 
Variables and constraints can be represented by so-called constraint graphs. Thereby, for each constraint 

type an associated constraint graph can be calculated. Within this paper these graphs are used for the 
presentation of technological dependencies. The solutions of constraint satisfaction problems are valid 
execution orders of the construction tasks, where all associated technological constraints are fulfilled. 
Normally, solving such complex constraint satisfaction problems is extremely time-consuming. The 
constraint-based simulation can be used to generate a possible solution very quickly (cf. Beißert et al.). 
Therefore, the constraint satisfaction approach was integrated into a discrete event simulation application.  

During discrete event simulations different events are generated by the procedures starting tasks and 
stopping tasks (cf. König et al.). Thus, the simulation time leaps from event to event. Furthermore the 
demand for the fulfillment of constraints is controlled within the procedures. A task can only be scheduled if 
all associated constraints are fulfilled. In Figure 1 the procedure of starting tasks is depicted. If a new event 
occurs, all tasks that have not been started are checked on fulfillment of their associated constraints. This 
leads to a set of next executable tasks. In the next step one of these executable tasks is selected for starting. 
Presupposed objects of this selected task like material, resources, or employees are locked during its 
execution and cannot be used by other tasks. Subsequently, all not-started tasks have to be checked again on 
fulfillment of their constraints by going to step one. The procedure is repeated until no more tasks can be 
started at the current time. If the remaining time of a construction task has expired, the task is marked as 
finished. Its presupposed objects are unlocked and can be used by other construction tasks. 

 
Figure 1: UML-diagram of starting tasks 

 
The starting and stopping of construction tasks are repeated until all tasks have been completed. All 

events as well as the locking and unlocking of material, resources, equipment, and working spaces are 
recorded. Thus, each simulation run leads to a practicable construction schedule that can be investigated 
afterwards, for example with regard to time or costs. 
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Simulated Annealing 

Simulated Annealing is a well-known local optimization approach for solving complex combinatorial 
problems like construction scheduling problems. The general goal of local optimization methods is to find 
good solutions in an adequate amount of time. The concept of Simulated Annealing is inspired by the 
physical annealing process in metallurgy (Kirkpatrick et al. 1983, Cerny 1985). In this context, physical 
annealing is known as the heating and controlled cooling of metal to bring the material structure from an 
arbitrary initial state to a state with the minimum possible energy. During heating, the metal atoms become 
unstuck from their current position and arrange themselves randomly. The slow cooling phase allows the 
atoms to find highly structured configurations with lower internal energy than in the initial configuration (cf. 
Aarts et al. 2005, Dréo et al. 2006).  

If this physical process is considered as an analogy to our area of concern, the solutions of an 
optimization problem represent the possible configurations of the atoms. The objective value of a solution, 
the so-called cost factor, is equivalent to the internal energy state. Starting with a high temperature and a 
randomly selected initial solution, the Simulated Annealing heuristic calculates a new solution within the 
neighborhood of the current solution. The acceptance of new solutions is based on a probability that 
depends on the difference between the corresponding costs and on the current temperature. Ultimately this 
means, that high temperatures allow the acceptance of new solutions, which causes higher costs. The 
probability of accepting higher costs decreases within the optimization process. Once accepted, the new 
solution is the starting point for the next optimization step. Consequently, in order to use the Simulated 
Annealing heuristic an appropriate neighborhood, a good temperature-based probability and an effective 
decreasing rate for the temperature have to be specified. 

Neighborhood 

The definition of an appropriate neighborhood for a current scheduling solution is very important. The 
construction tasks and their associated technological constraints form a directed acyclic constraint graph. 
Topological ordering is used to calculate an execution rank for each task (cf. Pahl and Damrath 2000). The 
rank depends on the ancestor degree of the task and is determined by the maximum length of connected 
ancestors within the graph. Thus, tasks with the ancestor degree of k belong to the rank k. Consequently if 
all needed resources were available in unlimited quantities, all tasks with an identical rank could be executed 
simultaneously. Typically, however, construction tasks with the same rank can only be executed successively, 
depending on the resource capacities and the current resource allocations. This leads to a partial task order 
within each rank. 

Within the scope of our Simulated Annealing approach the local neighborhood of a schedule is defined 
as the substitution of two construction tasks of the same rank. Thus, a new solution can be generated by 
selecting two different tasks of each rank for this substitution randomly. Figure 2 shows the topological 
ordering of the technological constraint graph of a simple scheduling problem. The problem consists of 
seven tasks {A, B, C, D, E, F, G} that have to be executed by four different resources {R1, R2, R3, R4}.  

 
Figure 2: Topological ordering of construction tasks 
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The resource constraints are not considered when determining the topological ordering. Nonetheless, 
these constraints have a deep impact on the resulting schedules and therefore on the resulting makespan and 
project costs. An initial solution can be generated based on the specified resource requirements (cf. Figure 3). 
Within this solution each rank has also an initial execution order of its construction tasks. The initial 
execution order of rank one is < B, C > and of rank two is < D, F, E, G >.  

 
Figure 3: Initial execution sequence 

 
Considering this initial solution a neighboring new solution can be generated by interchanging the 

execution positions of the tasks B and C for rank one.  This new solution also fulfills the defined 
constraints and leads to another correct resource allocation. Now, the new partial order of rank one is {C, B} 
and of rank two is {E, F, D, G} (cf. Figure 4). In a second optimization step the execution positions of the 
tasks D and E belonging to rank two can be substituted.  

 
Figure 4: New neighboring execution sequence 

Rules of  acceptance 

The probability of accepting a solution as a new start candidate can be specified by a probability function 
p(cc, cn, t), which depends on the current costs cc, the costs of the new solution cn and the current 
temperature t. Kirkpatrick et al. (1983) defined a typical probability function for many optimization 
problems as p(cc, cn, t) = 1 if cn < cc, and exp((cc – cn) / t) otherwise. This means that new solutions with 
lower costs are always accepted. When the temperature t goes to zero, the probability p tends towards zero. 

The convergence speed of the Simulated Annealing approach to find good solutions depends on the 
initial temperature ti, the criterion for decreasing the temperature and the decreasing rate Δt of the 
temperature. Ideal values for these parameters cannot be determined beforehand. These control values 
strongly depend on the specific optimization problem and have to be empirically adjusted. Normally, the 
decreasing criterion is based on the length of homogeneous Markov chains or a number of maximal 
iterations for the same temperature (cf. Dréo et al. 2006). Different static and dynamic cooling concepts exist 
for decreasing the temperature (Aarts et al. 2005). Within our case study the decreasing criterion is defined 
by a maximum iteration number and the decreasing rate Δt of the current temperature t as Δt = t – (α * t) 
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with the cooling parameter α. Typical values for α vary between 0.8 and 0.99 (Aarts et al. 2005). The detailed 
Simulated Annealing algorithm is shown in Figure 5. 

 

 
Figure 5: Simulated Annealing procedure according to Parmee (2001) 

Implementation 

Simulated Annealing is integrated into our constraint-based simulation approach by the following 
implementation steps. At the beginning of a new optimization the ranks of all construction tasks are 
generated, grouped, ordered, and stored in an execution list l. Furthermore the initial start temperature ti, the 
cooling parameter α, and maximum number of iterations for the same temperature are specified. For the 
generation of a new solution within a restricted neighborhood, the routine starting tasks (cf. Figure 1) was 
extended by the step “ordering tasks considering the restricted neighborhood” (cf. Figure 6). Therefore a 
temporary execution list lt is applied where the execution order of the tasks for each rank are stored. During 
a simulation run this list is continuously updated. After a list of next executable tasks is generated, its 
execution position within its associated rank is calculated for each task. Therefore, the temporary execution 
list is checked and the new results are added to the list. Thus, the execution sequence of each rank can be 
exactly specified afterwards.  

Within the first simulation run the next executable tasks are started randomly. Based on the temporary 
execution list lt and the neighborhood definition further execution orders of the tasks are calculated for all 
subsequent simulation runs. New solutions are generated by random substitution of two different work steps 
of the same rank. The interchanging is started with the lowest ranks. If there are two or more next 
executable tasks listed belonging to the same rank, then two of them are interchanged. Within each 
optimization step only one rank modification is performed. Each generated execution order is stored in a 
Tabu list. If a new order already exists in the Tabu list, the ordering routine for the current event is repeated 
by interchanging other tasks iteratively until a new ordering is found or a termination criterion is fulfilled. 
The termination criterion is defined by a maximum number of iterations. 
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Figure 6: Generating a new solution by ordering executable tasks 

 
After each optimization step the list lt contains a new execution order for all tasks. Consequently, the new 

costs cn for this new schedule can be calculated. In the next step, the probability value for accepting the new 
solution is specified and checked by using a normalized random number r. The new solution is accepted, if r 
is less or equal p(cc, cn, t), then the temporary execution list lt is copied to the list l. Following this, the 
current temperature t is reduced by Δt, if the maximum number of iterations for this temperature t is 
achieved. 

Case study 

In this section the presented Simulated Annealing concept is evaluated by scheduling several finishing 
trades of a building storey with twelve rooms, thirteen dry walls, twelve interior doors, and fourteen window 
sills (cf. Figure 7). 

 
Figure 7: Finishing elements of building storey 

 
The different finishing trades with their considered work steps are shown in Table 2. Based on the given 

number of rooms, dry walls, window sills, and interior doors as well as the specified finishing trades, 190 
tasks and 1199 technological and resource constraints are generated. 

Table 2: Finishing trades with tasks and required workers 
Finishing Trades  Tasks and required workers 
Ground works spill floating screed (two floorer), lay flooring tile (one floorer), lay 

carpet (two floorer) 
Dry construction install drywall (two drywaller), install hung ceiling (two drywaller) 
Joinery install window sill (one joiner), install doors (one joiner) 
Coating color wall (one painter), color ceiling (one painter) 

Figure 8 depicts the partial constraint graph for one floor, two hung ceilings, and two dry walls 
including the opening and coating tasks. In this example, the construction task spill floating screed has 
to be finished before covering tasks in the same floor can be started. Furthermore, before the 
construction tasks spill balancing material can be started the two associated walls have to be assembled 
completely. 

For this case study two drywallers, two painters, two floorers as well as one joiner were specified. Under 
the given resource constraints (cf. table 2), optimized schedules with minimal makespan are determined by 

Building story (100 x 69 foot)  
• 12 rooms 
• 13 dry walls 
• 12 interior doors 
• 14 window sills 
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Monte Carlo simulation and Simulated Annealing. Both optimization experiments were simulated for exact 
60 minutes. Within the Monte Carlo experiment the next executable tasks are selected randomly. For the 
Simulated Annealing experiment an initial temperature ti = 300, a cooling parameter α = 0.8 and the same 
maximal number of iterations for the ordering routine (cf. section implementation) and for the temperature 
reduction of n = 10 were used. 

 
Figure 8: Partial constraint graph of selected finishing tasks 

 
The results of the Monte Carlo and Simulated Annealing optimization are shown in Table 3. After 10 

minutes 1000 different Monte Carlo schedules with an overall minimal makespan of 535 hours were 
simulated. By using Simulated Annealing 137 accepted solutions were generated. The last and therefore best 
solution has a makespan of 492 hours. In this case study the Simulated Annealing heuristic found an 
execution schedule that is about 43 hours faster than the best schedule generated by Monte Carlo simulation. 

 
Table 3: Evaluation of the optimization experiments 

Experiments (10 minutes) Max [h] Min [h]  [h] σ [h] 

Monte Carlo 658 535 632 40.44 

Simulated Annealing 627 492 525 19.63 

Conclusions and Outlook 

Using the constraint-based simulation approach different practical schedules can be simulated. 
Afterwards promising solutions can be evaluated in terms of work and material flow organization, utilization 
of space and worker’s efficiency as well as process costs, afterwards. However, the application of Monte 
Carlo Simulation is very time-consuming and the locating of optimal respectively optimized schedules is not 
guaranteed. The application of local optimization methods guarantees the calculation of optimized schedules 
in an adequate amount of time. We integrate the Simulated Annealing metaheuristic in our simulation 
concept. Thus, clearly improved solutions can be generated in a diminished amount of simulation runs.  

In future work, the justifications of the heuristic parameters like temperature and its cooling rate have to 
be investigated. The parameters choice is decisive for results quality. Thus, a problem-specific adaptation of 
both is essential to effective generate good schedules. The decreasing criterion based on the length of 
homogeneous Markov chains or a number of maximal iterations for the same temperature are promising 
possibilities for a problem-specific adaptation and are investigating in future work. 
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