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Abstract 
     Contour Crafting is an emerging technology that uses robotics to construct free form structures by 
repeatedly laying down layers of material such as concrete. The Contour Crafting technology scales up the 
additive fabrication process from building small industrial parts to constructing buildings. Tool path 
planning and optimization for Contour Crafting benefit the technology by increasing the efficiency of 
construction of complicated structures.  This research has intended to provide a systematic solution for 
improving the overall system efficiency and realizing the automation of the Contour Crafting technology for 
building custom-designed houses. An approach is presented to find the optimal tool path for the single 
nozzle Contour Crafting system incorporating the physical constraints of the technology and construction 
considerations. Several algorithms are given to find the collision-free tool path for the multiple nozzle system 
based on the single nozzle approach. 

1. Introduction to Contour Crafting 

Contour Crafting [R2] can automatically construct custom-designed structures by repeatedly laying down 
construction material. It is an additive fabrication technology that uses computer control to exploit the 
superior surface-forming capability of troweling in order to create smooth and accurate planar and free form 
surfaces out of extruded materials. Unlike many other automatic additive fabrication technologies such as 3D 
printing, SLS, SLA, FDM[R4], which can only deliver relatively small size of three-dimensional structures 
(normally 1 cubic foot maximum), Contour Crafting has the capability to fabricate with thick layers using 
various materials and without compromising surface quality. Contour Crafting scales up the additive 
fabrication process to mega scale construction activities (Figure 1). The goal of Contour Crafting technology 
is to build custom-designed houses in a short time such as a day. 

Since Contour Crafting has the ability of remarkably reducing the overall cost, injury, construction waste 
and impact to the environment, it can be effectively used for building houses for the low income class, 
shelters for disaster victims or even colonies on remote areas or other planets[R6]. Contour Crafting will also 
impact the construction industry for its capability and flexibility in constructing intricate or innovative 
structures. Its ability to build free-form shapes by utilizing the side trowels reduces the difficulty and cost of 
construction of complex structures. The cost of a house built by Contour Crafting technology mainly 
depends on the materials used and on the overall machine time. Innovative or organic form structures (such 
as adobe) might cost the same or even less than conventional rectangular structures because they require less 
support material.  Architects are given more design flexibility because Contour Crafting eliminates many 
design limitations. CC allows architects to focus on the aesthetic appearance and functionality of the 
structure with less concern about construction limitations.  

2. Process planning and optimization in Contour Crafting 
Process planning and optimization play important roles in realizing the automation of the Contour 

Crafting system and improving the overall system efficiency. These functions generate optimal tool path for 
Contour Crafting system specific to the given structure designs. Furthermore, multiple-nozzle or multiple-
gantry systems may be involved in construction of larger community and multi-residence structures. In these 
cases specific schedule and workload will be assigned to individual nozzles or gantries for collaborative 
operation. Collision between nozzles should be avoided without compromising the overall constructing 
efficiency. This paper intends to present a systematic methodology for Contour Crafting process planning 
and optimization through the following steps:  
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standard TSP, distances between two cities are the same in both directions; otherwise we have an asymmetric 
TSP. A solution to the TSP must return the cheapest Hamiltonian cycle of the graph which represents the 
cities and paths. A Hamiltonian cycle is a simple path in the graph that contains each vertex. An asymmetric 
TSP problem can be formulated as follows: Define Xij = 1 (when i,j are the index of the vertices), if edge (i,j) 
is in the optimal tour; otherwise Xij = 0, and Dij = d(i,j), when d is the traveling cost between vertices i and 
j. we have 

Min Σ Σ Dij Xij 

 Σ Xij = 1  for  all j 

 ΣXij = 1  for all I 

 ΣΣ Xij >= 1  for every  S ⊆ X (when i ∈ S  ; j  ∈  X-S) 
The graph of a structure layout cannot be directly formulated as a standard TSP problem.  In the CC 

construction process, some edges in the graph have to be traversed by the nozzle in order to deposit 
concrete for building walls, which means that the CC tool path has to contain some specific edges. However, 
any edge can be included in the optimal path in TSP since any edge represents a path between two cities. 
Also, a vertex in a structure layout may have several edges incident to it, which means during the 
construction process, the nozzle of the CC machine will visit the same vertex more than once. However, in 
TSP, each vertex can be visited only once. Figure 2 shows two graphs that share the same set of vertices. 
One of the graphs is a structure layout for CC. Another one is the optimal TSP path generated by Concorde 
TSP solver [R5], using the same set of vertices. 

                            
 

Figure2: two graphs that share the same set of vertices construction 
 

For Contour Crafting, the overall construction time of a specific structure is the sum of the overall time 
of concrete deposition and the overall nozzle airtime, in which the nozzle stops depositing material and 
travels between two deposition edges. No matter how the optimal path is generated, the nozzle should 
traverse all the deposition edges once and only once. The overall deposition time is determined once the 
structure is given. The overall nozzle idle time is the factor that determines the overall construction time for 
different tool paths. The optimal tool path is a path that has the minimum overall nozzle airtime. Since the 
nozzle of the machine can move freely in 3-dimensions, it can go straight between any vertices. The problem 
of finding the optimal tool path can be stated as follows: 

Given a set of edges on a layout, find the optimum sequence and direction in which: (1) each edge is 
traversed exactly once and (2) the airtime travel (motion between two end points of two edges) is a straight 
line. The optimal solution minimizes the overall airtime travel. 

An approach to formulate the problem is to ignore the deposition edges (walls) while only considering 
the traveling paths between edges (the airtime of the nozzle). In this case, walls shrink to vertices (entities), 
when the paths between vertices represent the cost of traveling between walls. Figure 3 shows the concept 
behind this approach. 
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Layout model for CC construction        Tool path generated by Concorde TSP solver 

A structure layout Compact edge to vertex (letters represent edges)             
Figure 3 Concept of shrinking edges 
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Results: 50 structure layouts (small scale problem, less than 100 vertices) have been tested using the above 
approach with the given CC system parameters. Single nozzle optimal tool paths have been successfully 
found for all the layouts.  CPLEX [R5], a commercial integer programming solver is used to check the 
accuracy of the result.  
3.3 Tool path planning and optimization methods for multi-nozzle system based on optimization of the single nozzle case 

The primary concern in using multiple nozzles (or gantries) is that collision between different 
nozzles/gantries should be avoided.  The tool path generation of the multi-nozzle system includes two steps. 
The first step is to separate the original structure into different sections according to the number of nozzles 
by using an iterative dividing procedure. The second step is to create tool paths for these sections so that no 
collision between the nozzles occurs when they travel along the tool paths.   

3.3.1. Step1: Iterative dividing. 

In order to assign workloads to different nozzles, the original structure layout should be separated into 
different sections according to the number of the nozzles. Ideally, each section contains an equal amount of 
work load so that the construction time of all of the sections is the same. Straight lines can cut across the 
original layout in order to divide it into sections with the condition that the sums of the length of all of the 
wall segments in different sections are equal or approximate.  The single nozzle optimization algorithm (CC-
TSP) is applied to find out the overall construction time of each section of the layout. If the difference 
between the construction times is acceptable (lower than the pre-set threshold) then the workload 
assignment is considered to be achieved.  Otherwise, the cutting lines should be moved and split the original 
structure, the optimization should be performed again on each section to find the difference between the 
construction times.  The above procedures will be performed iteratively until the best result is achieved.  

Initial
 cut

Initial
 cut

Move the cut if not satisfy

Iterative
 cut

 
Figure 6 Iterative dividing 

3.3.2. Step 2: create collision-free tool paths between the divided parts 

After evenly dividing the structure into different sections, collision-free tool paths between the divided 
sections can be created. There are two ways to prevent collisions during the construction, they are:  (1) setup 
a buffer area to prevent the nozzles from getting too close to each other during the construction process, 
and (2) analyze the x/t curves of the gantries that carry the nozzles. Three algorithms are proposed to find 
the optimal collision-free tool paths. Some algorithms have a higher chance of converging to a feasible 
solution than the others. However, the extent of optimality of their solutions might be lower. These 
algorithms are: (1) buffer zone; (2) path cycling; (3) buffer zone path cycling. 

3.3.2.1 Buffer zone  

Nozzles may collide near the shared section borders. Gantries that carry the nozzles could collide with 
each other when they are working near the cutting edge of adjacent sections since the width of the gantries is 
not equal to zero. See figure 7.  

Buffer zones can be setup on both sides of the shared border in order to prevent collisions near the 
border. Buffer zones must meet the following conditions: (1) the size (width) of the buffer zone should be 
bigger than the width of the gantry; (2) the overall workload in the buffer zone should be less than half of 
the overall workload within the section that contains the buffer zone. When more than two gantries are 
working together, one gantry should avoid the collision with gantries on either side, therefore each divided 
section needs to have two buffer zones. The concept of auxiliary buffer zone can be used to reduce the 
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50 random structure layouts each having less than 200 vertices have been tested using the above 
algorithms with the given CC system parameters. Following are the number of collision-free tool paths for 
each algorithm listed: 

 23 for buffer zone, 12 for global path cycling, 42 for Individual path cycling and 50 for buffer zone path cycling (with 
the longer overall airtime than cycling based global optimization). 

path cycling path cycling path cycling

 
Figure 11 Buffer Zone Path Cycling for N machines system 

Conclusion 

This research has intended to provide a systematic solution for improving the overall efficiency of 
construction by Contour Crafting. An approach is presented to find the optimal tool path for the single 
nozzle Contour Crafting system. Several algorithms are also presented to find the collision-free tool path for 
the case of multiple nozzle systems. Practical and efficient tool paths can be generated using the proposed 
approaches to enhance the already attractive aspects of Contour Crafting. 
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