Coordination between Project Participants
through Constraint-Management

Hossam El-Bibany, Research Assistant
Boyd C. Paulson, Jr., Ohbayashi Professor of Engineering
Lai Heng Chua, Research Assistant

Stanford University
Department of Civil Engineering
Stanford, CA 94305-4020
s.Aa

ABSTRACT

Project parties need to coordinate their efforts throughout the project life-cycle.
This is especially the case in fast-tracked projects that have become commonplace in
the construction industry. The crude methods available currently have become
inadequate for these severe demands. In this paper, we describe the utility of
constraint-management theory as a tool for building an integrated knowledge base
to coordinate across disciplines involved in the overall project life-cycle. The paper
starts with a brief description of the coordination problem in the AEC industry. A
constraint-based view of a project's life-cycle is then described in section 2.
Section 3 discusses the functionality and different issues related to implementation
of a computer system to facilitate coordination. Section 4 describes the scope of
and the environment that we have chosen for implementation. The paper ends with
some conclusions based on the current state of this project.

1. INTRODUCTION AND BACKGROUND

The waning competitiveness of the U.S. construction industry in the past 20 years
has been well-documented. Since the 1960's, the productivity of the nation's largest
industry has been declining at a rate of 1% to 2% per year [Howard et al 89]. Practically
all observers agree: one of the root problems is poor coordination in a highly fragmented
and specialized industry. The planning, design and construction phases of a single
project—whether a road, a bridge, a building, an industrial plant, or some other facility—
are typically carried out by different planners, architects, and engineers, often working for
different public or private organizations. Even at a particular phase of a project, such as
design, the major structural, mechanical, and electrical engineering design tasks are likely
to be performed by separate individuals and organizations. At the same time, fast-tracked
projects, where design proceeds almost concurrently with construction and thus require
tight coordination, have become the rule rather than the exception. While specialization has
produced high quality results in specific cases, it has also created problems of coordination
in an increasingly complex and time-pressured environment. An example of the results of
errors in coordination is the 1981 collapse of the skywalk in the lobby of the Hyatt
Regency Hotel in Kansas City [Marshall et al 82].

The methods currently used for coordination are quite primitive. Most of the
information is passed by voice and paper up and down the organization as well as between
organizations. Groups at all levels of the project organization meet often to sort out the
issues and solve problems. Not only is this meeting process expensive, but the participants
in the meetings often do not bring all their knowledge to bear on the problem. Rather, they
work as best they can within their narrow areas of expertise and responsibility.
Jurisdictional considerations result in having many "untouchables” — i.e., “it is not within

- 505 -

our jurisdiction.” There are personality problems: people with brilliant and valuable
economic solutions may not choose to communicate their ideas during the short time
available in meetings, or they may not get the chance. Meetings are also expensive since
management time is expensive. Ideally, project participants should all work as a team to
solve the problem better, but we cannot achieve this with technological tools.

In this paper, we present a research topic that we started recently to investigate the
utility of constraint-management theory as a tool for coordination across disciplines
involved in the overall project life-cycle, and to identify the main issues in constraint
representation and reasoning for achieving this coordination. It is not meant to be an
encompassing integrative framework, but as a tool that participants can choose the extent to
which to use. Earlier research on constraints focused on using them in the single area of
design, planning or scheduling. However, the methodology of constraint-management can
be extended in various directions to encompass a wider range of engineering problem-
solving. Constraint-management provides a uniform framework for expressing the
relationships that are necessary in engineering problems. It also provides transparent
mechanisms for maintaining consistency among these relationships.

2. A CONSTRAINT-BASED VIEW OF THE WORLD
2.1 A Constraint View of Project Life-Cycle Integration

We can look at a constructed facility as a set of related objects. For example, in a
multi-story steel residential building, beams and columns are objects. Each party involved
in the creation of the building imposes different relationships among these objects. In the
final facility, all of these relationships are satisfied. The architect forms the spatial
relationships among the beams and columns and imposes more constraints on the final
shape of these objects. The structural engineer forms a different set of constraints on the
attributes of the same objects. Some of these constraints are derived from the structural
analysis, and other constraints come from specifications imposed on the attributes of the
objects. The construction planner might have another constraint on the weight of these
objects due the capacity limitations of the cranes that can be available on site. In real life,
these different sets of constraints imposed on the same object are known by different
parties. They can only be communicated through organizational channels which are not
very reliable and thus risk the delays that can occur either because one of these constraints
is missed (e.g., crane-capacity limit which may require the redesign and manufacturing of
another object), or because the set of constraints has no common solution (e.g., the depth
of a beam cannot satisfy the architecturally required limit due to the high load intensity that
it carries). In any case, the problem has to be communicated back to the parties involved
and a redesign must then be initiated.

Other kinds of constraints appear in a fast-track project where the requirements
change as the facility is being erected. A decision to add one more floor would, of course,

depend on the maximum capacity of the supporting foundation and columns that are already
erected.

2.2 Restrictive vs. Suggestive Constraints

The previous constraints fall into two different types, restrictive (hard) and
suggestive (soft). Restrictive constraints are imposed through specifications or analysis
(failure or serviceability requirements). Failure to satisfy a restrictive constraint on an
object should alert the parties involved in setting the constraints on this object to solve the
problem. Suggestive constraints are mostly imposed by different parties for economical
reasons (e.g., reducing cost). The crane-capacity constraint mentioned above can be

- 506 -

suggestive if higher capacity cranes are available. A non-satisfied suggestive constraint
would not bring the system to a halt, but may notify the user of the implication of the
failure to satisfy the constraint.

2.3 Conceptual View of the Project

The structure of a system that uses knowledge about objects in the form of
constraints is envisioned as shown in Figure 1. Knowledge about project objects forms the
basic core. The constraints layer describes the relationships that we wish to maintain
concerning the properties of the various objects. The connectivity layer ties all parties
working on the project together. Figure 2 illustrates some examples of project objects and
project constraints.

Connectivity Framework

Project Constraints

Project
Objects

Conceptualize

Figure 1- Framework for Coordination between Project Parties

3. COMPUTER SYSTEM REPRESENTATION AND REASONING

Our main objective is to unite the analytical and the heuristic aspects of design,
construction and facility management under a common constraint-based framework to build
and maintain an integrated object knowledge base.

We formulate constraints when we conceptualize the problem and decide what
important objects and relationships occur in the domain of every party involved in the
project. We propagate constraints when we derive new information based upon what is
currently known by using the causal knowledge encoded in the constraints. We integrate

constraints when locally (to one party) consistent descriptions are checked for global
consistency (with all project parties) [Stefik 80].

Examples of project objects:
beams, pipes, wiring, formwork, scaffolding, cranes, compressors, pumps, locations,

activities
Examples of sources of project constraints:
Architectural Design - distance between adjacent columns must be at least 8m
- distance from floor to bottom of next floor beam must be
at least door height
Structural Design - maximum shear stress, maximum bending moment
Construct on Architect - use other materials as concrete is very expensive
Design on Architect - largest bridge span is 1500m
Design on Construct - maximum concentrated load on floor
Construct on Design - maximum reachable height for concrete pump

- maximum weight liftable by crane

Examples of formulation of project constraints:
height of door + height of beam < distance between floors
weight of object to be moved < maximum weight liftable by crane
weight of equipment on floor + weight of load < maximum concentrated load on floor
no more than two large cranes can be on the site at the same time

Figure 2- Some Examples of Project Objects and Constraints

3.1 System Functionality

In the process of constraint propagation and integration, every step will be recorded
in a multi-layer truth-maintenance (see section 3.2) to form an integrated knowledge source
about the relationships between the attributes of the different project objects, and the way
the constraints were solved (e.g., what are the heuristics used to solve each problem, who
supplied these heuristics, etc.). The user can, then, query the integrated object knowledge
base for the existence of certain relationship between the attributes of different objects. He
can even plan his future decisions by querying for the effect of any change in an object's
attribute, without really making the change, on any other object or total project cost. This
allows the user to make efficient whar-if queries without affecting the use of the system by
other parties.

For the user to change an object's attribute under his control, the system would
access the truth-maintenance module to decide on the constraints that would be affected,
reschedule these constraints for propagation, and update the truth-maintenance module as
these constraints are being successfully solved. The system would send messages to every
participant identifying the party that required the change, the affected objects, and the way
the attributes of these objects have been affected. The users can query the system for the
details of any change, or run a what-if analysis for the effects of any changes which they
might be proposing, on the different objects. In case of constraint violations, the system
would prompt the user responsible for the entry to withdraw his change that resulted in the
violation or relax one of his requirements. The user may withdraw the change that he

- 508 -

requested or, if he insists, the system would notify the different parties who are responsible
for the violated constraints to tell them they need to solve the problem through meetings or
any other type of communication. The solutions should then be entered into the system.

3.2 Supporting Theory

In developing the proposed theory, there are three major items that need to be
investigated. The first concern is the development of the multi-layer truth-maintenance
system as a project knowledge base, and its interaction with the constraint-management
engine. Analogous to Stefik's meta-planning layers [Stefik 80], we are designing a multi-
layer truth-maintenance system [de Kleer 86 a,b and c¢]. Each layer forms an abstraction
and holds more information on the facts which led to the formation of the lower layer. For
example, while the constraints are being solved, a lower layer in the truth-maintenance
module would hold the dependencies between the attributes of the different objects. These
dependencies have resulted from applying certain heuristics and meta-heuristics to solve the
constraints. A higher layer in the truth-maintenance module would hold the information on
the application and dependencies between these heuristics. It would probably be very
helpful for the user if another higher layer would hold information about the value intervals
of each attribute which would, or would not, affect the value of a certain dependent
important attribute. The types and number of layers required are being studied.

The second concern is to determine the type of actions that the system should take
when it detects a constraint violation or when it incorporates new knowledge. Updating the
knowledge in the machine is not enough since the human agents may take actions based on

outdated knowledge leading to problems. The system will have to update the knowledge of
the different participants with any changes.

The third concern is to determine how to gather the information required to maintain
the system and interact with participants. One of these facilities would be a browsing
facility allowing the different users to browse through the different project objects and

constraints. Every participant has the authority to change only the constraints for which he
is responsible.

3.3 Framework for Integration

The framework for integration that we plan to use can be described by the following
points:

1) Object-oriented representation. Our representation of objects attributes and their
relationships is based on the concept of a module [Chan 86, Lansky 88]. The
module concept is associated with encapsulation, information hiding and controlled
interface between the module and its environment. The module is a named
collection of methods and constraints on the objects' attributes which are
encapsulated so that access to the objects' attributes or the methods can be
controlled via the interface protocol. This partitioning is very useful in controlling
the human-machine interface. An attribute is simply a named entity that represents a
parameter and can accept design descriptions, which are the values of the design
parameters (examples are depth of beams, columns dimensions, crane capacity,
etc.). In each module, frame-based structures will be used to represent object
attributes and their relationships. Objects can be physical (beams, columns, etc.),
or conceptual (constraints, construction activities, etc.). Slots will represent
structure of objects (e.g., physical attributes of a beam), behavior of objects in the
form of procedural attachments and active values (e.g., compression stress check
for a column), relationships (e.g., supportedBy relationship), or conceptual
information (e.g., constraintProvidedBy).

- 509 -

ii)

1ii)

Planning. Solving any problem using constraints needs a plan of the sequence of
the constraints to be solved. In a cooperative system, where different users interact
enter constraints, we cannot assume that there is a certain sequence of

for an object's attribute cannot be adequately or efficiently described by the cause-

- and-effect mechanism (failure of propagation). The party who is most

Vi)

knowledgeable about the problem provides this heuristic knowledge.

Truth-maintenance. Truth-maintenance is g method for keeping track of changes
and undoing them if necessary. A multi-layer truth-maintenance system will be
constructed. The first layer keeps track of the changes in the values of attributes of

project objects and constraints. The second layer keeps track of the heuristics used,
etc.

vii) What-if query capability. The framework provides users with the capability to

perform what-if queries, What-if queries are tested against the normalized
knowledge base. A powerful query system would be built that helps users
formulate their questions.

viii) Locking and unlocking for multiple user access. The system allows several parties

X)

to input constraints, make what-if queries and create new project objects. The
designer does not have to be finished before the construction manager inputs his
constraints, nor does he have to wait until the architect has input his constraints or
defined his project elements. However, to make sure that a value or constraint
cannot be changed under the user's nose, some database locking, such as read and
write locks, will be designed and provided.

Tracking knowledge. Since multiple parties are involved, it is necessary to keep
track of who created the project objects and define their attributes, defined
constraints, etc. This knowledge is called tracking '/cnowle.zdge and will be

Interface Elements. All interactions are processed through a rich human-machine
interface. Each party has an interface designed to suit his or her viewpoint of the

project. The interface includes the ability to browse the defined project objects and
constraints.

- 510 -~

4. IMPLEMENTATION AND SCOPE

The research is based on a constraint-management System which we are designing
and implementing. We see the constraint-management System as a tool that will gssiss
Isb

personnel at all leve Yy flagging conflicts and enabling them to determine the cause of
problems and thereby solve the right problem in a better way.

project.
4.1 Implementation Environment

In our view of knowledge integration, there are two things that we want to capture:
the knowledge that is encapsulated within the objects, and the relationships among the
objects. A methodology that combines object-based representation (static) and a constraint-
based engine (dynamic) would provide us with most of the necessary power. Neither
methodology alone would be adequate. We have chosen an object-oriented logic
programming system as an implementation environment. Logic programming will provide

us with the strong capabilities of dynamic data manipulation [Chan 86, Chan and Paulson,
87,88].

5. CONCLUSIONS

- 5811 -

6. REFERENCES

Chan, W.T., 1986. Logic Programming for Managing Constraint-Based Engineering

Design, Thesis submitted to Stanford University in partial fulfillment of the requirements
for the degree of Ph.D., March.

Chan, Weng-Tat, and Boyd C. Paulson, Jr., 1987. “Exploratory Design Using

Constraints,” Journal of Artificial Intelligence in Engineering Design and Management,
Vol. 1, No. 1, December, pp- 59-71

Chan, Weng-Tat, and Boyd C. Paulson, Jr., 1988. “An Integrated Software Environment
for Building Design and Construction,” Proceedings of the Symposium on Microcomputer
Knowledge-Based Expert Systems in Civil Engineering, Hojjat Adeli, Ed., Spring
Convention, ASCE, May 9-11, pp. 188-202.

de Kleer, J., 1986 a. “An Assumption-based TMS,” Artificial Intelligence, vol. 28, pp.
127-162.

de Kleer, J., 1986 b. “Extending the TMS,” Artificial Intelligence, vol. 28, pp. 163-196.

de Kleer, J., 1986 c. “Problem Solving with the TMS,” Artificial Intelligence, vol. 28, pp.
197-224.

de Kicer, 1., and Brown, J. S., 1986. “Theories of Causal Ordering,” Artificial
Intelligence, vol. 29, pp. 33-61. o

Howard, Fl. €. R. | Levitt, B. C. Paulson, i, L G Pohil and C B Tatum, 1989,
"Computer-Integration: Reducin g Fragmentation in AEC Industry," Journal of Computing
in Civil Engineering, Vol. 3, No. 1, January, pp. 18-32.

Iwasaki, Y., Simon, H. A., 1986. “Causality in Device Behavior,” Artificial Intelligence,
vel. 29 pp. 3-32.

Lansky, A. L., 1983 "Localized Event-Based reasoning for MultiAgent Domains,"
Technical Note 423, Artificial Intelligence Center, SRI International, January.

Marshall, R.D., et al, 1982, Investigation of the Kansas City Hyatt Regency Walkways
Collapse, Technical report Science Series 143, National Bureau of Standards, Washington,
D.C., May.

Sertane, D., 1987, Constraint-management in Conceptual Design, Sc.D. Thesis,
Massachusetts Institute of technology, December.

Shoham, Y., 1987, Reasoning about Change: Time and Causation from the Standpoint of

Artificial Intelligence, Ph.D. Thesis, Dept. of Computer Science, Yale University, New
Haven, Connecticut.

Stefik, M., 1980. Planning with Constraints, Ph.D. dissertation, Dept. of Computer
Science, Stanford University, Stanford, California,

- 5812 -

	o.pdf
	t

