
Automation and Robotics in Construction XVI © 1999 by UC3M

Design of an Object Oriented Environment for Planning

Mobile Crane Lifts

K. Govinda Rao Koshy Varghese
Project Associate, Assistant. Professor,
Dept of Civil Eng. Dept. of Civil Eng.
I.I.T. Madras, India I.I.T. Madras, India

N. Ramesh Babu K.N. Satyanarayana
Associate Professor, Assistant. Professor,
Dept. of Mech. Eng. Dept. of Civil Eng.
I.I.T. Madras, India I.I.T. Madras, India

Abstract
This paper describes the work done towards

designing a computer aided system for planning
crane operations on a construction site using
object-oriented programming concepts. The use of
object-oriented programming concepts for design
is important as it facilities robust design,
distributed development, modularity, reusability

and easy extension of features. Based on the
planning and representation requirements, an
object-oriented analysis and design was done using
the Booch method. The platform selected for

implementation was AutoCAD Rel.14 with the
AutoCAD Runtime Extension (ObjeciARX) in the
Windows 95/NT operating system. This platform
was found to support all important object-oriented

constructs as well as the component object model

(COM) which ensures plug-in capability and
independent extensibility for various modules of the
system. A detailed architecture of the system
components within this environment has been
developed and potential usage of this system is
illustrated.

1.0 Introduction
On industrial projects, the use of cranes to

perform heavy lifts is a common activity. These
lifts involve the installation/replacement of plant
equipment such as compressors weighting 30t to
large process columns weighing up to 800t. As
industrial sites are congested with closely space
equipment, overhead and underground piping, and
structural steel, the planning and execution of the
lift can be a complex task.

Past work in the area has addressed issues
on identifying the requirements of heavy lift
planning systems, and developing software
environments to assist the planner [Brown & Root
91][Bennet 94][Varghese 97]. However, as most of
these systems were developed on propriety
platforms, their usage is limited. Further, the
design and implementation of these systems are
based on conventional concepts and technologies
that are now being replaced by object oriented
design concepts and implementation environments.

The objective of this work is to develop a
computer aided heavy lift-planning environment
using object-oriented design methodologies and
tools which support the implementation of the

design. A planning environment implemented based
on object-oriented concepts will posses a robust
design and facilitate the extension of system features
without modification to the basic design decisions. A
detailed coverage of object oriented design concepts
are presented by Booch [Booch 94]. In an attempt to
make the environment easily available to planners, it
was decided to develop it on a hardware/software
platform that is widely available in construction

organizations.
This paper is organized into six sections. The

following section reviews the past work done in
computer aided planning of crane lifts. In the third
section, the various classes required for the system
and relationships between classes are discussed. Next,
the development environment selected and its features
are discussed and an implementation architecture for
the system is presented. The fifth section illustrates
the usage of the system and finally the conclusions
drawn from the current effort and focus of future work

are presented.

2.0 Past Work
A computer aided lift planning system called

"Computer Aided Rigging" (CAR) was developed by
a team of programmers and experienced lift planners
at Brown & Root [CAR 90] [Alexander 921. This
system was developed within the Microstation CAD
package using the Microstation Development
Language (MDL). Using the system interface a user
can enter the dimension of the load and radius of lift
and the system will list the cranes which can lift the
load without exceeding capacity and interfering with
the load. In addition, the rigging details can also be
designed by the system. A drawing of the lift
configuration for field planning is also generated by
the system.

In a concurrent effort, research was conducted
at the University of Texas at Austin to classify the
components of a lift plan, identify the features
required of a Heavy Lift Planning Systems and
developing a prototype Heavy Lift Planning System
called HELPS [Wolfhope 91] [Hornaday 93]
[Varghese 97]. This system was developed in the
visualization environment Walkthru. Features of
Walkthru were enhanced to support heavy lift
planning. HELPS permitted the user to select
different crane, site and load configurations and

145

10- Inheritan

• Whole/pa

O Usin

• Associati
Abstract

Loa

Figure I : System Design

simulate the entire lift operation while monitoring
the lift parameters.

At Bechtel. a lift planning software named
Automated Lift Planning System (ALPS) was
developed using a customized visualization
environment [Benett and Ditlinger 94]. This
software also can be used to design the rigging
assembly for a given load, select a suitable crane,
and visualize the lift environment for making
decisions on the lift parameters.

Further research at the University of Texas
resulted in the development of an interactive
planning system for optimizing multiple heavy lifts
on a single job site [Lin 96]. This system was
developed in the Microstation environment. It
incorporates algorithms that assist the planner to

locate the crane from a position where a maximum
number of multiple lifts can be performed.

While the basic features of the above system
are relevant to lift planning domain, the incorporation
of all the decision support and automation features
required for lift planning is a immense task and has to
be incorporated in an incremental fashion. The
software design and architectures of the above
systems are based on conventional software design
methodologies. This limits the ease with which new
features and algorithms can he added to the software.
By utilizing an object-oriented approach, it is expected
that the translation of the problem requirements to
software structure will be more natural, the ensuring
design more robust and the ease of extensibility
enhanced.

146

3.0 System Design

The preliminary step in developing an
object oriented design is to identify the classes or
"key abstractions", which are required to represent
the problem. The classes are identified based on
the presence of physical objects, roles, events and
interactions that are a part of the problem domain.
Next, the main attributes of the classes are
identified. These attributes reflect the properties,
which the object instantiated from the class will
possess. Finally, the relationships between the
classes are defined. Figure-I shows a
representation of the design.

There are three key physical systems
interacting in the lift planning process. They are
the crane, the load and the site. Each of these is a
high level abstraction in the representation.
Physically a crane is a composition of sub
components such as the base, cab, boon.
counterweights, line, etc. The sub-components
have a "has a" (aggregation) relationship with the
crane class and are modeled as classes themselves.
The aggregation relationship is used further to
model the hierarchical decomposition of the crane
components to the level of detail required for
planning the lift.

Some of sub-components in a crane can
have specialized properties. For example, all cranes
have booms but a particular boom has to be a
lattice-boom or telescoping boom. Each type has
distinct properties and behavior. Similarly the crane
base is classified into different categories such as
crawler, truck mounted, ringer etc. To capture these
relationships the inheritance concept is used. The
general category (e.g. boom) is represented as a
parent class containing the common properties that
will be inherited by the child classes. The
specialized properties of the child classes (e.g.
number of' inserts for a lattice boom) are specified
in the child class. To take advantage of
polymorphism the parent classes are defined as
abstract classes (in the c++ context). This allows
common behaviors such as luffing & slewing to be
inherited from the parent class while specialized
behavior (e.g. extend_boom) to be declared as a
virtual function in the parent class and redefined to
exhibit specific behavior in the child classes.

A given crane model can have different
configurations based on, boom attachments,
counterweights, special attachments etc. The load
chart used to determine the lifting capacity of a
crane depends on the specific configuration. For
example, the popular Manitowoc 4100W series of
cranes has numerous configurations based on
crawler position, boom specification (open throat
etc.), jib attachments (static, luffing), base type
(crawler, ringer), counterweight loaded and special
attachments such as Max-Er. Once the
configuration is fixed, the capacity depends on
boom length and lift radius. Thus, the load chart is

also abstracted to a class, which is a component of the
crane configuration.

The lift area generally comprises of obstacles,
which are on the surface or under the surface. The
surface obstacles interfere directly with the lift
operation, while the sub-surface obstacles affect the
lift operation only when they are overloaded. The
general attributes required to model surface obstacles
include location, allowable clearance and installation
schedule. For the suh-surface obstacles, attributes such
as allowable stresses and soil properties have to be
represented instead of allowable clearance. These two
categories of obstacles are considered to make tip the
lift area. A separate class called Site has been defined
to aggregate these obstacles.

The object, which is to be installed in the
lifting operation, is represented as the class Load.
This class undergoes three states during the planning
process. It is initially an independent object at the pick
location. Whenever the object is attached to the crane
or placed in it's final position; it becomes a pail of the
crane or the site respectively. The relationships
between the classes are represented in the Figure-I by
the association symbol.

The lift plan is developed using a selected
crane configuration, load and lift area. The existence
of the plan is encapsulated in the form of a separate
class called Lift Plan. The basic attributes of this class
include planning parameters such as crane location,
pick location, lift path, minimum clearances etc.
Different plan scenarios (objects) can be created from
the Plan class. Each scenario can contain a different
set of plan attributes for the same crane-site-load
combination.

It can be seen that design using object-oriented
concepts provides a natural representation of the lift-
planning situation. As a result, the likelihood of
changes in the basic representation when new features
are added to the software is lower. It should be noted
that in all of the physical classes identified above.
shape is also an important attribute. Further no classes
relating to the user-interface was discussed, as it is an
implementation issue. The translation of this
representation into a specific software implementation
depends on the features of the development
environment and the encoding language.

4.0 Development Environment
As discussed in previous studies, an integrated

software system which can assist the lift planner to
generate and test alternate lift plans will enhance
planning productivity. The system should be
implemented in an environment which can support
object-oriented development and be easily available to
construction planners. As the AutoCAD package is
widely used in construction organizations and
supports customization, it was decided to explore the
capabilities of this package for developing the lift
planning system. Numerous development alternatives
are a vailable within AutoCAD. These include Auto
Lisp. AutoCAD Development System (ADS).

147

Windows

USER INTERFACE

Atit (_'A 1)

ARX

Library Motion Data User

management control integration interface

module module module module

Visual C++

Library files

Crane Site Load

models models models

Figure 2: System Architecture

Visual Lisp, Visual Basic for applications (VBA),
Visual Basic and Object ARX.
AutoLisp: AutoLisp is an artificial intelligence
language and it is not generally well known outside
of two specific communities- artificial intelligence
and AutoCAD. AutoLisp is slow in execution and
take even days to execute the complex programs.
ADS: It is C interface to AutoCAD. C is not
inherently "object-oriented". The interface to the
AutoCAD database is slower than with ObjectARX

and C++.
Visual Lisp: It is an enhancement of the mature
AutoLisp. Built with ObjectARX programming
technology, Visual Lisp for AutoCAD Release 14
provides a new set of advanced, object-oriented
customization tools. It dramatically reduces
AutoLisp development time. The Visual Lisp
compiler creates an ObjectARX application from
your Lisp source files that loads and executes 3 to
10 times faster AutoLisp. It have the advanced
features what ObjectARX have.
VBA: VBA enables customers to use AutoCAD
Release 14 ActiveX Automation features. VBA is
significantly faster than AutoLisp. The execution
speed is very close to a compiled C++ ObjectARX.
But it is not object-oriented.

Of these, the options which supported object-
oriented development were VisualLisp and
OhjectARX. Of these, ObjectARX was selected for
developing the lift planning system, as it is the
native environment for AutoCAD and utilizes the
widely available language C++.

4.1 Object ARX Details
This is the product developed by Autodesk

to program, customize and extend the capabilities

Capacity
charts

MS ACCESS

of AutoCAD using the C++ language in a Windows
environment. ARX functions are created as Dynamic
Link Libraries (DLL file). These libraries are
independent program modules, which can be
loaded/unloaded into/from AutoCAD implicitly or
explicitly. When these libraries are loaded into
AutoCAD, the functions coded in the DLL files can be
called from within AutoCAD thus extending its
functionality. The entry point to the DLL files for an
application has to be coded based on the specifications
required by that application.

Dynamic Link Library files created using ARX
specifications have a ARX extension. They arc
usually created using appropriate settings in the Visual
C++ development environment. These settings include
the location of the Application Program Interface
(API) for AutoCAD. The functions are then coded and
compiled in the conventional manner. Once compiled,
they can be distributed to other Will platforms and
loaded into AutoCAD without any further

compilation.
Development using ObjectARX permits the

implementation of Object-Oriented Constructs in the
C++ language. It permits the definition of custom
classes and reactors. The custom classes can inherit
properties from both the Microsoft Foundation Classes
(MFC) as well as the classes defined within the

AutoCAD package.

Class Libraries in Object ARX

The important class libraries available to
ObjectARX modules are given below. The
applicability of these libraries in the context of
implementing the lift planning system is also

discussed.

I

148

.q._nd ' _q-e
ommand............. _ :...........

t 70EBt, E,t,'5D; d727

Figure 3: System Interface

AcRx: This is a top-level library of classes used
for runtime class registration and identification. It
provides a set of C++ macros to declare and define
new ARX classes, which are always derived from
AcRx Object class. For example, while deriving a
new class from any of the AutoCAD standard
entity classes ACRX_DECLARE _MEMBERS ()
macro is used in the declaration of classes that are
to be a part of the ARX runtime tree.
AcEd: It is a library of classes for registering
native commands. To register the user-friendly
commands for the present application, it is
necessary to use AcEd functions. For example, to
make the crane travel in a particular direction, we
can use our own commands such as
"MOVECRANE" by selecting appropriate items
from the interface.
AcGi: This is a graphics interface library classes,
used to draw AutoCAD entities. This class is
needed to display the drawing "entity dynamically
when it is subjected to any standard
transformations like moving, rotating, scaling etc.
AcDb: This is a library of database classes giving
direct access to drawing entities. This class is
needed to model all graphical elements such as the
boom of the crane is made up of solid elements of
the class type AcDb3dsolid.
AcGe: This is a library of geometry utilities
which provides classes for points, vectors and
matrices etc. To do any type of standard
transformations on any of the drawing entities we
need to use these geometry utility class libraries.

For example, in case of swinging cab of the crane, it is
necessary to specify three parameters, namely, center
of rotation (point), axis of rotation (vector), and angle

of rotation.
AcBr: This is a library of classes for inquiring into
the boundary representation of solids. It is necessary
to interact with AcBr class library, to get information
about topological elements with in the solid model.
For example, to detect interference between the
crane/load and site objects we need to invoke the
methods defined in these classes.

As ARX modules share the memory space with
AutoCAD, it has direct access to the
AutoCAD entities. This makes the execution of ARX
programs faster than the alternate development
methods. However this direct access to memory also
exposes AutoCAD to greater risk of crashing, if the
Object ARX module crashes.

4.2 System Architecture
Figure 2 shows the architecture of the system

within the AutoCAD environment. Key modules
developed within ObjectARX environment are shown.
The features of these modules along with the basic
features of AutoCAD provide the system
functionality.

The Library Management Module is a key
module that provides seamless access to the library of
cranes, loads and sites. This module ensures that
appropriate graphics files are loaded, corresponding
objects constructed and initialized with relevant
attribute information. The graphics files are created

149

off-line and stored in appropriate directories as

library files.
The Motion Control Module deals with

various motions of the crane. This nodule will
define the master-slave relationships between the
various components of the crane and ensure that
the motions along the degrees of freedom of the
model selected are natural. The functions to check
for interference between the crane, load and site are

also specified in this module.
The Data Integration Module is used to link

the state of the crane's graphical image with the
load charts. As the boom is lowered or raised the
lifting capacity of the crane will change. This
module will keep track of the geometrical
properties and read the corresponding capacity
from the charts. As the most convenient way to
store the crane table is through a standard database
such as MS Access. Object Data Base Connectivity
is used to establish the link between the lift
planning system and the database. This also
ensures that the load chart can be stored using any

standard database.
The user interface module will permit the

user to utilize the added functionality in an efficient

manner . It makes use of relevant MFC as well as
AutoCAD classes and presents a customized lift-
planning interface in the AutoCAD environment.
The various events created in the interface are
linked to functions within the other modules.

5.0 System Usage
The system is currently under development,

a brief description of the usage is given in this
section. Figure 3 shows a typical screen from the
planning system. Using the options in library
management menus the user can invoke relevant
dialog boxes to select and specify different crane

configurations, load geometry and site.
Using the motion menus the crane is moved

to a location and the lift operation involving the
picking and placing of the load is attempted. In
addition to the usage of above menus the arrow
keys on the keyboard can be used, for example, to
move the crane in all directions. During the pick
and place operation the user is notified if there are
any obstructions or if the load exceeds the capacity
of the crane. If there are any impediments, the user
can alter the crane location, lift path or pick
location and make another attempt.

If after numerous tries a workable plan
cannot be developed with a particular crane-load-
site combination. A different crane configuration
can be selected and the planning process continued.
For some scenarios, it might be required to alter the
properties of the load or site. This can also be done
through the planning system. Thus the environment
will allow the planner to conduct what-if analyses
with little effort while visualizing the details of the
plan. Once the user is satisfied with a lift plan he
can store the scenario in a plan file. Numerous

:uch plan files can be stored for review at a later Mute.

6.0 Summary and Conclusions
A heavy lift planning system is a complex software
package. The features required for effective use of the
package evolve. Adding the new features should not
cause any major changes in the fundamental design of
the system. An object-oriented approach to design
promises a robust design to which new functions can

be added incrementally.
A preliminary design for the problem was developed

using Object-Oriented concepts. The concepts
provide a mechanism for natural translation of the
real-world situation into a software representation.
However there are no objective tests to check the

validity and robustness of the design.
The Object ARX environment provides basic
development features suitable for the implementation
of the system. Further work on implementation is
required to make a detailed assessment of the
strengths and limitations of this environment for this

work.

Acknowledgements
This work was supported by the Department of
Science and Technology, vide Grant No.

111.5(1 10)/97-ET

References
I) Alexander, S. (1992) "Avoiding Trouble With

Rigorous Planning : Load Lift Modeled On

MicroStation", MicroStation Mgr.. 2(8).
2) Bennett, C. and Ditlinger, S. (1994) "Bechtel

Automated Lift Planning System" Robotics for

challenging environments ; Proc., ASCE Spec.

Conf., ASCE, New York, N.Y.
3) Booch, G. (1994). "Object Oriented Analysis And

Design With Applications", Addition-Wesley

Publishing Company.
4) "Computer Aided Rigging (CAR)"(1990). Brown

& Root Braun, Houston, Tex.
5) Hornaday, W. C., Haas, C.T., O'Connor, J.T. and

Wen, J. (1993). "Computer-aided planning for
heavy lifts", J. Constr. Engrg. and Mgnrt., ASCE,

119(3), 498-515.
6) Lin, K., and Haas, C.T., (1996). "Multiple Heavy

Lifts Optimization" J. Constr. Engrg. And Mgnrt.,

ASCE, 354-362. .
7) Kruglinski, D. (1997). "Programming Microsoft

Visual C++ Fifth Edition", Microsoft Press.
8) Wolthope, J. S. (1991). "Design for computerized

heavy lift planning system for construction". MS
Thesis, Univ. of Texas, Austin, Tex.

9) Owen Ransen (1997). "AutoCAD programming
in C/C++", John Wiley & Sons Ltd.

10) Varghese, K.. Dharwardkar, P., Wolfhope, J. and
O'Connor, J.T. (1997) "A Heavy Lift Planning
System for Crane Lifts", Microcomputers in Civil

Engineering, 12, 3 1-42.

150

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6

