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ABSTRACT 

 

Building Information Models (BIMs) are 

becoming the official standard in the construction 

industry for encoding, reusing, and exchanging 

information about structural assets. Automatically 

generating such representations for existing assets 

stirs up the interest of various industrial, academic, 

and governmental parties, as it is expected to have a 

high economic impact. The purpose of this paper is to 

provide a general overview of the as-built modelling 

process, with focus on the geometric modelling side. 

Relevant works from the Computer Vision, Geometry 

Processing, and Civil Engineering communities are 

presented and compared in terms of their potential to 

lead to automatic as-built modelling. 

Keywords - Building Information Model (BIM); 

As-Built Modelling; As-Built BIM; As-Designed BIM 

 

1 Introduction 

Building Information Models (BIMs) are digital 

representations of facilities that encode all the relevant 

information about their life cycle from construction to 

demolition, including, but not limited to, 3D design 

drawings, schedule, material characteristics, costs, and 

safety specifications. Conceived using open standards to 

facilitate knowledge sharing and interoperability 

between different stakeholders, BIMs gained a general 

acceptance within the construction industry, as they are 

expected to provide significant cost savings and 

improved productivity in construction projects. 

Standards for BIM creation include (a) Industry 

Foundation classes IFC (ISO 16739) for building models, 

(b) ISO 15926 for process plants models, and (c) IFC-

Bridge or BrIM for bridge models.  

Whilst creating as-designed BIMs (i.e. BIMs 

generated in the design stage of a facility) is a 

straightforward process becoming increasingly common, 

generating as-built BIMs (i.e. BIMs that reflect a facility 

in its as-built conditions) is a challenging, but necessary 

process for facilities not equipped with an as-designed 

BIM and for facilities where the as-built conditions differ 

from the as-designed BIM. The focus of this paper is set 

on the as-built BIM (AB BIM) generation for buildings.. 

Creating an AB BIM requires two major steps: data 

collection, to capture the as-built conditions, and data 

modelling, to generate compact, but rich representations 

readily understandable by other processes. Although 

historically, (AD) BIMs were introduced in the 70's, gaps 

in technology (in data collection and storage) and 

knowledge (in data modelling) prevented the 

construction industry from employing AB BIMs; to this 

date, very few AB BIMs exist. Auspiciously, the 3D 

reconstruction field, related to Computer Vision and/or 

3D laser scanning techniques, filled the technology gap, 

offering off-the-shelf tools for generating 3D models of 

scenes. Consisting, basically, of a set of 3D points 

endowed with 3D Cartesian coordinates and possibly 

colour information, these models that will be denoted 

from now on as point clouds, are useful for visualisation 

or augmented reality purposes [1]. However, the data 

modelling side continues to be deficient, and the problem 

of converting the raw point cloud into a semantically rich 

BIM model is far from being settled. Available 

commercial and academic tools to perform this 

conversion require extensive human intervention, 

making them expensive and error-prone [2]. Given the 

expected economic impact, automatically generating   

AB BIMs from point clouds is a key objective for the 

industrial, academic, and governmental parties involved 

in the Architectural/Engineering/Construction and 

Facility Management industry (AEC/FM).  

This paper provides a general overview of the as-built 

modelling process, with focus on the data modelling side, 

and presents relevant works from different research 

communities, discussing their potential of being used to 

automatically generate AB BIMs from raw point clouds 

of buildings. Whilst AD BIMs, if present, can greatly 

facilitate the modelling process, in this work we limit the 

discussion to as built modelling in the absence of AD 

BIMs. We refer the reader to [46] for a more general 

discussion on as built modelling, including as built 

modelling of industrial plants.  
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2 Problem Statement 

Given as input a raw point cloud, the goal of the as-

built modelling process is to generate a semantically rich 

3D model of the facility, composed of objects 

characterised by geometry, relations and attributes [3]. 

Ideally, the result would be an AB BIM file, encoded 

using a standard language, e.g. IFC in the case of 

buildings.  

Preliminarily, it is worth noting that the as-built 

modelling process is limited by several objective factors, 

and thus even the best possible as-built modelling method 

cannot be expected to output an AB BIM as rich as an 

AD BIM. The following aspects, and possibly others, 

induce objective limitations in the as-built modelling 

process:   

 AD BIMs contain semantic information pertaining 

to the designer's high level knowledge, but which 

cannot be (physically) inferred from a digital model, 

e.g. specifications, costs [4]; 

 The level of detail of the resulting AB BIM is 

limited by practical aspects related to data 

collection. Even if presumably the technology used 

for data collection is able to capture fine structures 

like outlets, or fasteners, the added-value of 

modelling these small elements does not justify the 

time and costs needed to meticulously collect and 

model the data [5];        

 Non-visible and partially occluded building 

elements cannot be captured during data collection, 

hence they will not appear in the final AB BIM; e.g. 

the reinforcement inside a concrete column [6]. 

Note that devices to capture the non-visible 

elements exist (e.g. non-destructive testing 

technologies like ground penetrating radars), but 

research on automatically interpreting data coming 

from such devices is in very early stages, and no 

successful procedure is available to date, hence 

these devices will not be considered in this study. 

Taking these limitations into account, we define the 

desired output of the as-built modelling process as a 

working BIM model, which represents a reduced version 

of the complete BIM, and encodes visible building and 

spatial elements, together with their relationships. 

Using an object-based inheritance hierarchy, IFC 

defines three abstract concepts: object definitions, 

relationships, and property sets, whose sub-classes are 

used to define a BIM [7]. The working AB BIM is 

expected to contain visible objects encoded in IFC as 

instances of the IfcBuildingElement class (beam, 

chimney, column, door, wall etc.), and instances of 

IfcSpatialStructureElement (building, storey, site), but 

not IfcElementComponent (fastener, reinforcing mesh), 

or IfcDistributionElement; building elements also 

include information about material properties. Relation-

wise, instances belonging to (at least) IfcRelDecomposes 

and IfcRelConnects need to be modelled, since the 

proximity and nesting relations of building elements can 

be captured from the as-built conditions, whereas higher-

level semantic relations like IfcRelAssociatesConstraint 

which links a certain IfcConstraint object to a building 

element cannot be inferred. 

The key task in generating the AB BIM described 

above is the recognition of the predefined building 

elements and their relationships. Note that in practice, 

generating the volumetric representations and the 

relationships of the predefined building elements suffices, 

as commercial tools to perform the conversion between a 

CAD model and IFC objects exist [8]. Depending on the 

approach, different auxiliary tasks can be used to 

facilitate this process:   

 Geometric primitive detection: Report if and where 

predefined simple geometric shapes appear in the 

given point cloud, e.g. detect planar patches.  

 Point cloud clustering: Given predefined criteria, 

e.g. planarity measure, cluster the input points to 

obtain segments of points with similar descriptors. 

 Shape fitting: Given a subset of the original point 

cloud and a predefined model (e.g. a cylinder), find 

the parameters of the model.   

 Classification: Given the segmented point cloud 

obtained above, assign to each segment a unique 

building element label.    

Note that when an AD BIM is available, the sought 

output remains the same, but the tasks undertaken to 

achieve it shift their focus from detection and recognition 

to one-to-one matching and verification. 

The general as-built modelling process, from data 

collection to BIM generation, is summarised in Figure 1, 

and comprises the following steps: point cloud 

generation, point cloud pre-processing, and as-built 

modelling per se. For self-containment, we first discuss 

briefly the former two steps, and then we address 

extensively the as-built modelling step. The aim is to give 

a critical analysis of the state of research, comparing the 

existing works in terms of the output they provide, and 

Figure 1 As-built modelling process 



how close or far they are from the desired output. This 

will result in positioning the existing works in the space 

of possible outputs, governed by the objective limitations 

mentioned above and the intrinsic limitations of each 

method, as depicted in Figure 2. 

3 As-Built Modelling from Point Clouds 

Generating the full geometric model of a facility is an 

intricate problem, mainly because the point cloud to be 

processed is generally very large, and it contains a high 

number of infrastructure elements that need to be 

identified (e.g. walls, floors, windows), possibly in the 

presence of clutter. Detecting and recognising predefined 

infrastructure elements is the core of as-built modelling. 

However, of equal importance is the modelling of the 

relationships between elements, which can contribute in 

obtaining a coherent global geometric representation.  

Depending on the criterion used to define this global 

coherency, existing approaches in geometric modelling 

can be classified into global optimisation approaches and 

local heuristics. The former are generally model-based, 

and reason about the scene as a whole, trying to find a 

global geometric interpretation that is optimal in terms of 

maximum a posteriori estimation [9], [10], [11] or energy 

minimisation [12]. The relationships between the 

elements can be used as an active ingredient of the global 

model, allowing to inject prior information about the 

scene layout [9], [11], e.g. common relationships are 

“adjacent walls are perpendicular to each other”, “walls 

and floors are perpendicular”, “doors are contained 

within walls”, etc. Opposed to this holistic approach, 

which can be quite complex model-wise and expensive 

computation-wise, the local heuristic approaches use 

bottom-up reasoning, in which the elements of the scene 

are treated independently and possibly the prior 

information about the relationships between the elements 

is used as a rejection criterion for potentially erroneous 

local configurations [13], [14].  

In both categories, there exist few works that describe 

full modelling procedures for point clouds, pertaining to 

Computer Vision, Geometry Processing, or Civil 

Engineering communities. But other works that address 

either particular parts of the as-built modelling, or the 

geometric modelling problem in general, are also of 

interest, hence they will be included as well in our 

discussion. However, we focus on automatic methods or 

works that have potential in the process of automatically 

obtaining BIM models; we do not detail works that 

depend on some form of user interaction;  see e.g. [15] 

for a presentation of these works.   

 

3.1 Global optimisation approaches 

Dick et al. proposed an automatic framework for the 

geometric modelling of point clouds of buildings [9], 

whose output is a volumetric representation of the 

building, with objects labelled as “wall”, “door”, 

“window”, “column” etc. Their approach uses a Bayesian 

model, whose overall prior distribution is obtained by 

modelling the prior distribution of each building element 

represented through simple parametric shapes, together 

with their relationships. At modelling time, a Markov 

Chain Monte Carlo (MCMC) algorithm is used to find 

the parameters of the building elements that maximise the 

a posteriori likelihood. A similar overall reasoning is 

used by Lafarge et al. for urban modelling [16]. The main 

strength of these works resides in the fact that they lead 

directly to a semantic interpretation of the scene objects, 

together with their relationships.  

A natural possibility to exploit the prior information 

on relationships between elements is to use graphical 

models trained using labelled data, i.e. a segmented point 

cloud with elements labelled as “wall”, “door”, “clutter”. 

Based on this idea, the authors of [10] train a Conditional 

Random Field to model the relationships between planar 

patches extracted from point clouds of buildings. 

Explicitly modelling the relationships between the 

elements of the scene improves the accuracy of the 

overall geometric modelling process. A different 

formulation based on graphical models is used in [11] for 

urban modelling. The authors start by semantically 

segmenting the point cloud into four different classes 

(“building”, “vegetation”, “ground” and “clutter”) and 

minimise an energy functional to find an optimal 

configuration. The outcome is a combination of 

parametric shapes (planes, cylinders, spheres or cones) to 

describe regular roof sections, and mesh patches for 

irregular roofs. The compactness and the representation 

power of this approach make it appealing for modelling 

buildings in the presence of clutter. In a similar reasoning, 

but targeting indoor scenes, the authors of  [17] first 

extract a coarse scene structure by semantic segmentation 

of pixels into “ground”, “walls & ceiling”, “furniture”, 

“props”, then use integer programming to obtain a 

refined optimal configuration of the scene, while 

considering support relationships between the elements 

of the scene. Again targeting indoor scenes, Bao et al. [18] 

Figure 2 Output space of as-built modelling 



distinguish between (planar) surfaces that belong to the 

room layout and those that belong to objects in the room, 

by using cues from both the point cloud and the images, 

in a cost function minimisation problem that seeks to 

estimate the room's layout.   

An integrated framework to model a scene as a set of 

interrelated networks of labels, functionalities, and 

descriptors, is proposed in [19]. Although it allows to 

reason about a scene at a very high semantic level, the 

framework has reduced flexibility in modelling the 

interactions between the networks; hence the 

contribution of this work is mostly at a theoretical level.  

Although not specifically addressing the problem of 

semantic point cloud modelling, the works on geometric 

multi-model fitting proposed in [12] are relevant for as-

built modelling. In both approaches the authors formulate 

a global energy minimisation problem that considers the 

multi-model geometric fitting as an optimal labelling, 

solved using graph cuts [20]. 

 

3.2 Local heuristics  

Sacrificing the notion of statistical optimality, a large 

number of works related to as-built modelling consider 

local heuristics approaches, in order to obtain more 

efficient algorithms. Generally, these methods take 

advantage of the fact that the geometric model of a 

building can be fairly decomposed into simple parametric 

surfaces. The typical process starts by segmenting or 

clustering the point cloud using arbitrary criteria, and 

then fits different parametric shapes on the segments 

obtained. Strong cues specific to architecture scenes like 

orthogonality or symmetry, are typically used to guide 

the heuristic search, and discard abnormal configurations. 

Prior information about the layout of the buildings are 

used to attach semantic information to the detected 

elements.  

More specifically, the authors of [21] assume that 

walls are orthogonal to the ground, and apply space 

sweep algorithm [22] to detect them. The same algorithm 

is used in [23] to recognise the planar structures of a room. 

In [13], the authors first automatically infer a coarse 

model of the scene, by detecting the planes associated to 

its principal directions. This coarse model guides the 

detection of more complex polyhedral objects, 

representing doors and windows.  

In a series of papers, Stamos and Allen [24] seek to 

build textured geometric models from range scans and 

unregistered images.   The two data sources are processed 

in parallel to extract 3D lines from range scans and 2D 

lines from images, which are then matched to obtain 

images-scans registration, needed to texture the 3D 

model. Using laser scans data, Wang and Cho detect 

boundaries as line segments and use them to identify 

roofs, windows, doors, and walls [25]. 

Closely related to the model-based approaches 

mentioned above, the method introduced in [26] for 

urban modelling uses graphs to encode the connectivity 

of planar elements, and recognise predefined 

configurations by subgraph matching. In [14], the authors 

extract planar patches, which are classified into semantic 

elements (“wall”, “door”, “window” etc.) using hard-

coded prior knowledge. The result is a polyhedral model 

of the building. A similar approach is used in [27], where 

parametric primitives are detected using Hough 

transform, and described through their geometric 

characteristics (area, relative scale, planarity score etc.), 

which are used to identify openings' type and distinguish 

them from clutter by training an SVM classifier. In [28], 

planar patches previously extracted using a region 

growing algorithm, are classified using a stacked learning 

approach and contextual features. Similar to [27], 

openings are distinguished from occluded regions on a 

wall surface using SVM. In [29], the authors first detect 

planar surfaces and quadrics, which are then classified 

using multi-class AdaBoosted decision trees [30].  

Targeting scenes containing only planar surfaces, 

Xiao and Furukawa [31] generate a textured CSG 

representation of a point cloud by processing 2D 

horizontal layers to get room layout hypotheses, which 

are then merged to obtain the 3D model using regularity 

constraints about the structure of the building. The 

authors of [2] adopt a robust approach based on 

RANSAC to detect walls as planar patches bounded by 

3D lines, and then identify openings within walls.  

In a more recent work [32], Poullis presents a full 

bottom-up framework for automatic modelling of urban 

point clouds, without any prior constraint on the elements 

types or their relationships. A hierarchical clustering 

through greedy region growing allows to segment the 

point cloud into surfaces, whose boundaries are 

determined using a graph-cut energy minimisation. The 

results on very large point clouds are impressive, proving 

that even simple local statistical reasoning can lead to 

robust techniques for point cloud segmentation and 

extraction of parametric primitives. 

 

3.3 Auxiliary heuristics 

This section describes heuristic geometric modelling 

works that do not provide a semantic interpretation of the 

scene, but which could be used as building blocks of the 

as-built modelling process. 

Some authors addressed the problem of obtaining 

more compact representations of point clouds, while 

ignoring the semantic modelling. In this line of works, 

the authors of [33] detect parametric primitives (planes, 

cylinders, spheres) that replace the regular parts of the 

mesh, whereas the highly detailed parts of the mesh are 

kept as is. This strategy reduces the memory 



requirements, while preserving the distinctive features of 

the building. .  

In [34], the authors address the planar patch 

extraction problem, and apply sparse subspace learning 

to cluster the points into linear subspaces [35], and then 

robustly fit planes [36] to each detected segment. In the 

same line of works, many versions of region growing 

algorithms have been proposed to extract planar patches 

from point clouds, by first clustering the points using 

some local measurements, and then fitting planes on the 

resulted clusters [37].  

To fit higher-order parametric primitives to point 

cloud data, algebraic and iterative methods exist. 

Admitting a closed form solution, algebraic methods are 

efficient [29], but can have strong bias on incomplete 

data [38]. To obtain more accurate estimations, iterative 

methods are used which minimise a geometric error or an 

approximation of it [39]. The method proposed in [40] 

fits NURBS to pre-segmented point cloud parts, offering 

shape freedom and accounting for missing data. The 

point cloud segments can be obtained using a context free 

segmentation method, as the one described in [41], which 

employs a region growing algorithm based only on 

geometric properties. 

Targeting the problem of robustly fitting multiple 

different geometric models to point cloud data, Schnabel 

et al. propose a RANSAC version based on a new 

sampling strategy together with an early termination 

scheme that provides a significant speedup [42]. Another 

approach for robustly fitting multiple geometric models, 

J-linkage, is proposed in [43]: each point is represented 

by its preference set, defined as the set of models that are 

satisfied by the point within a tolerance. By clustering 

points with similar preference sets, the point cloud is 

segmented and the underlying models retrieved. In the 

same line of works, Nurunnabi et al. [44] proposed the 

Diagnostic Robust PCA (DRPCA) to locally fit surfaces, 

obtaining improved performance compared to other 

methods based on PCA, MSAC and RANSAC; it 

accurately fits planes in the presence of outliers and 

calculates the local surface normal.  

3.4 Overall analysis 

The high diversity of the works presented in this 

paper in terms of application field, methodology, and 

goals, makes it difficult to conclude with an objective 

comparative analysis. Considering the problem statement 

enunciated in Section 2, we will position some of the 

main works discussed above in the output space of as-

built modelling; the result is depicted in Figure 3. It can 

be readily observed that the majority of works 

concentrate on modelling planar surfaces along with their 

relationships. This is due, on the one hand, to the high 

frequency of planar elements encountered in building 

models, and on the other hand, to the reduced complexity 

of the problem; as soon as higher-order primitives are 

included in the analysis, non-trivial model selection 

issues occur. It is encouraging that few of the existing 

works reach volumetric representations and model inner 

relationships, getting close to the desired target. Among 

them, [29] and [27] are computationally more efficient. 

The missing link appears to be the material modelling, 

but since separate works on material modelling exist [45], 

including this step should be straightforward. 

 

 

Figure 3 Existing works represented in the output space 

of as-built modelling 

4 Conclusions 

This paper gives an overview of the as-built 

modelling process, by presenting various research works 

from different research communities (Computer Vision, 

Geometry Processing, Civil Engineering) that are 

currently used, or have the potential of being used, for 

successfully solving the challenging task of automatic as-

built BIM generation for infrastructure. Significant 

progress has been reported in the last years in this 

direction. While obtaining complete BIMs can engender 

high (unjustified) costs in practice, we believe that 

automatically generating working BIMs is achievable. 

For the future, the focus should be put on consolidating 

and integrating the existing techniques, along with 

developing new methods for object recognition. The 

recent advancements in object recognition and semantic 

segmentation [47] from the Computer Vision community 

using deep learning point to promising directions for 

automating object recognition tasks from point clouds. 

Joint research efforts within interdisciplinary projects can 

lead to accurate as-built BIM generation, producing a 

high impact in the construction industry.    
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