
Rule Checking Method-centered Approach to Represent

Building Permit Requirements

Seokyung Parka, Hyunsoo Leea, Sangik Leea, Jaeyoung Shina and Jin-Kook Leea

aDept of Interior Architecture Design, Hanyang University, Seoul, Republic of Korea

E-mail: seokyung.park529@gmail.com, hyunsoolee120@gmail.com, kignaseel@gmail.com,

jjyoung311@gmail.com, designit@hanyang.ac.kr

ABSTRACT

This paper aims to describe rule checking method,

classification and its demonstration. As applications

of BIM extends, there have been some challenging

projects on automated building compliance checking.

The current rule-making method is developer-

centered and thus is difficult to define rules without

propound programming knowledge. This paper

introduces high level rule making methods with law

sentence-centered approach. The proposed methods

have intuitive naming convention and are directly

mapped with the predicate of the law sentences.

Therefore, it is easy to infer function of the methods.

According to the type of object and property in

instance level, three hierarchies of method

classification were set: 1) level 1 divides types of

instance, 2) level 2 classifies the type of property, and

3) level 3 specifies the content of checking. From the

level 3, representative rule checking method is defined.

The representative method is subdivided into

extended methods according to the specific object and

property to check. The rule checking methods are

combined together to form an intermediate pseudo-

code. The pseudo-code is later to be parsed into

computer executable form. This paper mainly focuses

on 1) introducing law sentence -centered rule

checking method, 2) object and property-based

classification of rule checking method, 3) method

extensibility and 4) demonstration of rule checking

methods with actual requirement sentences from the

Korea Building Permit. The high level rule checking

method is developed as a part of KBimLogic.

KBimLogic is a software that translates the Korea

Building Permit requirement into computer

executable format. KBimLogic is now under

development with government funding.

Keywords –

Rule Checking Methods; Rule Checking Method

Classification; Automated Building Compliance

Checking; BIM (Building Information Modeling);

Korea Building Code

1 Introduction

As one of the Building Information Modelling (BIM)

applications, automated design evaluation has become

available in building design process [1]. Especially, code

compliance checking, conventionally done manually,

benefits from automated design evaluation [2, 3, 4].

There have been some challenging projects in code

compliance checking mostly led by governments such as

the USA, Norway, Singapore and Australia [5, 6, 7, 8].

In the process of rule checking, rule interpretation, a step

that translates requirement written in natural language

into machine executable format comes first [9, 10]. One

of the important lessons learned from the previous

researches is that logical structure of the law sentence is

significant in rule representation. Logical structure

enables ambiguous human readable requirement to be

explicitly executable in computer. As a part of logical

structure, we developed rule checking methods. Different

from existing rule-making methods, it is law sentence -

centered rule checking method.

This paper mainly focuses on introducing the rule

checking method and its object’s property based

classification. As an example structure of rule checking

methods, building permit requirements in Korea Building

Code were selected.

2 Research Scope and Objective

For the development of rule checking method, four

representative articles from Korea Building Code were

chosen. They were selected according to the feasibility of

application of the logical structure. The selected articles

are as follows: 1) Building Act 49, egresses from

buildings and restrictions on their use, 2) Building Act 53,

regulations on basement level, 3) Building Act 56,

construction of double walls and connecting corridors,

and 4) Building Act 64, regulation on installation of

elevator. Because the Korea Building Code has intricate

taxonomic relations, 44 related articles were additionally

chosen.

The rule checking method is developed as a part of

the logical structure. The logical structure consists of

three modules: object·property module, predicate module,

and relation module. The Object·property module

handles noun phrase in law sentences while the predicate

module treats verbal phrase. The Relation module is in

charge of combination of each module and taxonomic

relation of sentences. Among the three modules, the rule

checking method belongs to the predicate module. It

represents verbal phrase of law sentences. The figure 1

illustrates the research scope and objective of the rule

checking method.

Figure 1. Overview logical structure-applied rule

translation and the research scope of the rule

checking method

Instead of employing complex implementation-

centered programming language, combination of the

three modules generates intermediate pseudo-code. The

pseudo-code is later to be parsed into computer

executable format such as XML or script language.

3 Rule-making and Representation

Approaches

3.1 Current Rule-making Approach

Rule translation has been a challenging step for the

process of the rule-based checking system [11]. Tracks

of research activities in this area are as follows.

CORNET e-plan check, developed by Singapore

BCA, is one of the earliest code checking efforts. It

handles requirements on building control, barrier free

access, fire code, environmental health, household,

public housing and vehicle parking. CORNET rules were

hard coded in computer programming language [9].

GSA project performed circulation rule checking on

the US Court house design. To interpret the circulation

requirements into computer executable rule, the research

team predefined eleven parameters and processed each

requirement sentence accordingly [12]. Because the

parameters are specialized for circulation rules, it is

impracticable to adjust to other types of rules.

Solibri Model Checker (SMC) is one of widely used

model checker. It offers Rule Set Manager and allows

users to define their own rule. By combining predefined

rules checking libraries, users can make their own rule set

[13].

Building code is always open to amendment. The

hard coded way of making rule is fragile to modification

and needs programming experts to manage rule. In other

words, there is limitation in accessing rule-making. In

addition, Building Code is not limited to certain type of

rules but covers various issues. Therefore, universal way

of making rule is necessary. Although SMC rule set

manager enables various rule- making, its rule checking

library is developer-centered. Without profound

programming knowledge, it is hard to make rule set

properly. Moreover, SMC predefines parameters for each

rule. Parameters that are not predefined cannot be

checked without being hard coded into Java language.

3.2 Law Sentence-based Approach

From the current rule-making methods, two

challenges were found in rule-making. First, rule-making

should not be limited in certain type of rules. Secondly,

developer-centered methods are difficult to be used

without programming knowledge. Building permit

includes various types of rules and its automated

compliance checking is accessible to novice

programmers. Therefore, universal and intuitive way of

rule-making is necessary. Rule checking methods are

derived from law sentence-centered approach. It has

intuitive naming convention and directly corresponds to

the content of the law sentences. Therefore, novice

programmers such as architects, designers, reviewers and

anyone who wants to conduct compliance checking are

able to write and read the pseudo-code.

Korea Building Code consists of article-clause-Ho-

Mok structure. Single article delivers regulation of single

issue. As the article break down into Mok level, which is

the most segmented unit, single law sentence represents

single requirement in general. We split 48 Building Code

articles into 468 law sentences to derive high level rule

checking methods.

3.3 High Level Method-based Representation

of Law Sentences

The rule checking method is high level method.

Unlike implementation level method for rule execution

in model checker, it represents verbal phrase in law

sentences for rule translation. The rule checking method

has clear and intuitive name that matches with certain

words in law sentences. For instance, if a law sentence

asks to get the floor area ratio, a method named

getFloorAreaRatio() is used to represent this sentence.

Rule-making users can easily notice the usage of the

method from its name. However, for the low level

Logical Structure

Korea
Building

Code

Obj·Prop
Module

0101010101
1010101010

Natural
Language

Computer
Executable

Scope and Objective

Predicate
Module

Relation
Module

Rule Checking Method

Pseudo-code

IF !getFloor(egress floor)
ED = 30 // ED is Egress Distance
IF getBuildingUsage() =

“unmanned factory”
AND isExist(automatic fire

extinguishers)
ED = 100
ELSE IF getBuildingUsage()=

Rule Translation

implementation of this method in model checker,

complicated calculation is hidden behind. Therefore, the

high level method getFloorAreaRatio() is distinguished

from low level methods used to calculate floor area ratio

from a BIM model. Table 1 shows the list of high level

rule checking methods derived from the scope of the

Korean Building Codes.

Table 1. List of rule checking methods derived from the

selected building code

Representative Method Extended Method

getObject() getSpace()

getWindow()

isExist()

getObjectCount() getSpaceCount()

getElementCount()

getBuildingStroriesCount()

getProperty() getDoorType()

getElevLiveLoad()

getMaterial() getMaterial type()

getObjectUsage() getSpaceUsage()

getBuildingUsage()

getLandUsage()

getObjectHeight getSapceHeight()

getElementHeight()

getBuildingHeight()

getObjectLength() getSpaceWidth()

getElementWidth()

getSpaceArea() getSpaceAreaMax()

getTotalFloorArea()

getBuidlingToLandArea()

getElementArea() getWindowArea()

getDoorArea()

getObjectGradient() getElementGradient()

getMaterialType()
getSpaceIllunimance()

getObjectStructure()

isFireResistant

isFireProof

isfireCompartment

hasObject() hasSpace()

hasElement()

getObjectDistance() getSpaceDistance()

getElementDistance()

isConnectedTo()

isExternal()

isAccessible()

isAdjacent()

isGoThrough()

getDoorSwingDirection()

isEgressDirection()

Although the shape of the proposed methods

associate with the verbal phrase, it need to be logically

combined to fully deliver the meaning of the predicate in

law sentences. The basic form of logical combination is

as follows.

FUNC (PARAMS) OPERATOR VAL

1. FUNC() stands for high level rule checking

methods.

2. PARAMS stands for parameters of the rule

checking methods. Object and its property of

building element, condition of checking or method

itself can be parameters.

3. OPERATOR denotes comparison operators

4. VAL stands for value. Explicit value is substituted

in left operand. According to the content of the

check, the value varies from collection of objects,

numeric, Boolean, string or method itself.

By Comparing left operand with right operand using

comparison operators, logical combination composes a

full meaning of predicate in the law sentence. Table 2

shows the example of logical combination applied to

actual building code. The underlined phrases are

reconstructed into logical combination.

Table 2. Example of representation of logical

combination

Law

sentence

[Article 64 Clause 1]

A project owner of a building with six or

more floors and a total floor area of 2,000

square meters or more shall have an

elevator installed therein.

Logical

Combination

getFloorCount() >= 6

getTotalFloorArea()>=2000m²

isExist(elevator)=True

4 Rule Checking Method and its

Classification

4.1 Object and Property-based Rule Checking

Method

While the method represents verbal phrase, object

and its properties represent building related noun phrase

in law sentences. The rule checking method is

inseparable from the objects and properties of building

element, since they perform as parameters. The objects

and properties are also law sentence-centered. They are

not based on standard such as IFC, but on building code.

For example, in the Korean Building Code, there are

various terms regarding stairs such as escape stairs,

special escape stairs, direct stairs, winding stairs etc. In

the IFC schema, however, there is only IFCStair entity

for stair objects. Therefore, an issue of mapping arises.

The rule checking methods perform as a bridge to match

objects and properties in requirement and IFC model.

Figure 2 illustrates the relationship between standard,

IFC instance model, and building code. The role of rule

checking methods is a connector between code

requirement and instance model.

Figure 2. The role of rule checking method in

relating IFC model instances and requirements

Law sentences contain objects and properties that are

only recognizable in the instance level. For instance, rule

checking on counting a certain object is only available

once the building model is generated. Therefore, the rule

checking method covers objects and properties not only

handled in the class level (e.g. IFC schema) but also

generated in the instance level (instantiated building

model).

4.2 Method Classification

The method classification consists of three-level

hierarchy. Based on the law sentence-centered object and

property, each level has been classified. First, level 1 is

classification of instance type. In this level, methods are

divided into two groups: whether methods return value

concerning property or not. For example, ‘isExist()’

method, which checks the existence of a certain object is

included in the ‘Object’ group. The ‘Object’ group has

nothing to do with the object’s property. On the other

hands, ‘getMaterial()’ method, which returns information

about object’s material belongs to the ‘Object•Property’

group. This group inevitably relates to object’s property.

Secondly, level 2 classifies the types of property.

Because the ‘Object’ group does not concern with

property, only the ‘Object•Property’ group is classified

in this level. Thirdly, level 3 specifies the content of

checking. In this stage, representative rule checking

methods are defined. Table 3 illustrates the three-level

hierarchy and detailed contents of the method

classification.

Table 3. Hierarchical structure of the method

classification

Level 1 Level 2 Level 3

Object Query object

Check existence

Count object

Object·
Property

Basic

property

Get Property

Derived

property

(geometry)

Get object’s height

Get object’s width

Get object’s area

Get object’s gradient

Derived

property

(complex)

Get space’s illuminance

Get object’s structure

Get finish material type

Check firefighting related

properties

Relation Check inclusion

Check distance

Check physical connection

Get path

Get direction

The ‘Object’ group is classified into querying object,

checking existence and counting object in level 3. Figure

3 shows the overview of ‘Object’ group

Figure 3. Classification of object axis

The ‘Object•Property’ group subdivides diversely

rather than the ‘Object’ group. In the level 2, object’s

property is classified into three categories: basic, derived

and relational property. The basic property is default

property that object has when it is created by BIM

authoring tools. Name, usage, material of an object is an

example of basic property. Some of basic properties are

automatically generated and the others need to be filled

by users manually. As shown in the figure 4, getProperty()

is the representative method for the basic property. It

queries certain property of an object defined in the

parameter.

Figure 4. Basic property and its representative

method

As its name shows, the derived property is drawn

Standard

IFC Schema

IFC instance
model

Class Level

Instance Level

Object·Property
(instance level)

Rule
Checking
Method

Requirement

Building Code

Law
Sentence

Object·Property
(law sentence-

centered)

from calculation of property. The derived property is

categorized into two groups. One is the property

concerning geometric values such as height, width, area

and gradient. The other is the property that should be

inferred from other properties. This kind of property is

named complex-derived property. The information

needed to check complex-derived property does not

directly exist in the building model. There are two ways

of implement method for the property. One is to force

designers to fill in the information in the BIM model

using guidelines. Although this way is clear and explicit,

it increases the complexity of modeling work. The other

way is using programme and logic to derive information

in implementation level. Figure 5 lists the representative

methods within derived property.

Figure 5. Derived property

In law sentences, there are properties that are not

inquired with single object but with relation between

multiple objects. This kind of property is relational

property. Relations about inclusion, distance, physical

connection, path and direction are examined. Each item

is subdivided into specific rule of checking. For example,

relation about path includes three methods. The methods

are isAccessible(), isAdjacent() and isGoThrough(). As

their names suggest, the methods check space

accessibility, adjacency and whether path goes through

specific space. The figure 6 shows the categories of

relational property.

Figure 6. Relational property

The representative methods defined in the level 3 are

subdivided into extended methods according to specific

objects and properties. For example, representative

method getObject() extends to getSpace(), getFloor(),

getWall(), getWindow().

Figure 7. Extension of representative method

Naming convention for method extension is as

follows. Every method should start with get, is or has.

Methods start with ‘get’ queries exact object or value and

return a collection of objects or numeric. Those start with

‘is’ and ‘has’ check condition and return Boolean.

The specific naming rule for each type is as follows.

1. get+[Object]+[Property]

1) get+Object

Ex.) getObject(), getSpace(), getDoor()

2) get+Property

Ex.) getProperty(),getMaterial()

3) get+Property+Property

Ex.) getPathDirection(), getMaterialType()

4) get+Object+Property

Ex.) getSpaceCount(), getFloorUsage()

5) get+Object+Property+property

Ex.) getWallMaterialType()

2. is+ [Object | property]+[Predicate]

1) is+Predicate

Ex.) isExist(), isSameDirection()

2) is+Property

Ex.) isFireResistant(), isFireProof, isAccesible()

3) is+Object+Predicate

Ex.) isWallExist(), getSpaceCount()

3. has+Object

Ex.) hasObject(), hasSpace(), hasElement()

4.3 Extensibility

The rule checking methods we introduced in this

paper are derived from a portion of entire building permit

requirements stated in Korea Building Code. As a range

of targeted code broaden, new objects and properties may

appear. In consequence, new methods and extended

version of existing methods will be needed. There are two

Large scale
Type of instance

Medium scale
Type of property

Small scale
Type of checking

Extended
subdivision

Object

Object·Property

getSpace()
getFloor()
getWall()
getDoor()
getWindow()
…

Query: getObject()

Existence: isExist()

Count: getOnjectCount()

…

Basic property

Derived property
(geometric)

Derived property
(non-geometric)

Relation

Height: getObjectHeicht()

Length: getObjectLength()

Area: getObjectArea()

Gradient: getOnjectGradient()

...

getSpaceHeight()
getElementHeight()
getBuildingHeight()
…

directions of methods extensibility: lateral extensibility

and vertical extensibility. Lateral extensibility means

extension of object type. On the other hand, vertical

extensibility is an extension of property type. Since

method classification consists mainly of classification of

properties, advent of new property leads to creation of

new rule checking methods.

Figure 8. Two way extensibility of rule checking

method

5 Demo: Sentence to Method

With the rule checking method, we represented some law

sentences into pseudo-code. This code is an intermediate

code between natural language and computer executable

format. Although it is logically restructured code, it is

easily understandable to human. The following table 4, 5,

6 show demonstration of sentences to methods.

Table 4. Demonstration 1

Law

sentence

[Building Act Article 64 Clause 1]

“A project owner of a building with six or

more floors and a total floor area of 2,000

square meters or more shall have an elevator

installed therein.” [14]

Pseudo-

code

IF getBuildingFloor() >=6

AND getFloorArea() >=2000㎡

isExist(elevator)

END IF

Table 5. Demonstration 2

Law

sentence

[Enforcement of the Building Act Article 34

Clause 1]

“On each floor of a building, direct stairs

leading to the shelter floor or the ground other

than the shelter floor shall be installed in the

way that the walking distance from each part

of the living room to the stairs is not more than

30 meters: Provided, That in cases of a

building of which main structural part is made

of a fireproof structure or non-combustible

materials, the walking distance of not more

than 50 meters may be established, and in

cases of a factory prescribed by Ordinance of

the Ministry of Land, Infrastructure and

Transport, which is equipped with automatic

fire extinguishers, such as sprinklers, in an

automated production facility, the walking

distance of not more than 75 meters may be

established.” [14]

Pseudo-

code

IF !getFloor(egress floor)

ED = 30 // ED is Egress Distance

IF getBuildingUsage() = “unmanned

factory”

AND isExist(automatic fire

extinguishers)

ED = 100

ELSE IF getBuildingUsage() = “factory”

AND isExist(automatic fire

extinguishers)

 ED = 75

ELSE IF getMaterialType(main

structural part) = “non-combustible

materials”

AND isFireResistant(main

structural part)

 ED = 50

END IF

getSpaceDistance(living room, stair,

MRP) <= ED

END IF

Table 6. Demonstration 3

Law

sentence

[Enforcement of the Building Act Article 90

Clause 1]

“Emergency elevators (including the platform

and shaft of an emergency elevator; hereafter

the same shall apply in this Article) shall,

under Article 64 (2) of the Act, be installed in

buildings of which height exceeds 31 meters

in not less than the number according to the

criteria in each of the following

subparagraphs: Provided, That the same shall

not apply to cases an elevator installed under

Article 64 (1) of the Act is of the structure of

an emergency elevator:

1. Buildings of which height exceeds 31

meters and of which largest floor area among

the floor areas of each floor is not more than

1,500 square meters: Not less than one unit;

2. Buildings of which height exceeds 31

meters and of which largest floor area among

the floor areas of each floor exceeds 1,500

square meters: One unit plus one unit for every

not more than 3,000 square meters in excess of

1,500 square meters.” [14]

Pseudo-

code

IF getBuildingHeight() > 31

AND getNumberOfObject(emergency

elevator)

getFloor(height over 31m) = A

getDoor()

isDoorExist()

getDoorCount()

getproperty()

getDoorHeight()

getDoorWidth()

getDoorType()

getDoorSwingDirection()

…

Elevator

…

Lateral Extensibility

Vertical

Extensibility

Others

…

Others

…

Others

…

Door

getSpace()

isExist()

getCount()

getSpaceName()

getSpaceHeight()

getSpaceWidth()

getSpaceArea()

getSpaceIlluninance()

hasSpace ()

getSpaceDistance()

isAccessible

…

Space Window

…

IF getSpaceAreaMax(A) <= 1500

getNumberofElement(elevator) >= 1

ELSE

getNumberofElement(elevator) >=

(1+getSpaceAreaMax(A)/1500)

END IF

END IF

The pseudo-code is generated through the

KBimLogic software. KBimLogic performs translation

of building code into computer executable form. It offers

user interface for users to manually restructure building

code. The intermediate code generated by users is then

parsed into computer executable code such as XML or

script language. KBimLogic is under development as a

part of government funding project. It will be used

together with other software to develop an automated

building permit system for Korea government.

6 Summary

In this paper, we introduced the rule checking method

and its application on Korea Building Code related to

building permit requirements. The rule checking method

is developed with law sentence-centered approach. It is a

high level method that is directly mapped with verbal

phrase in the law sentence. The classification of the rule

checking method is based on the object and property of a

building. There is three-level hierarchy in method

classification. Level 1 divides type of instance, Level 2

classifies type of property, and Level 3 specifies the

content of checking. From the level 3 representative

method is defined. The representative method is

subdivided into various methods according to specific

objects and properties to check.

The rule checking method introduced in this paper is

developed from a part of Korea Building Code. As the

application of logical structure extends to the rest of

building permit requirements, the method will extend in

two directions: 1) lateral extensibility, which means the

extension of object type, and the 2) vertical extensibility,

the extension of property type. We represented actual law

sentences with combination of high level rule checking

methods. The pseudo-code is an intermediate code and

later to be parsed into computer executable format.

The rule checking method is developed as a part of

logical structure for KBimLogic. KBimLogic is a

software that translates Korean building permit

requirements into computer executable format. Together

with other softwares, the KBimLogic will establish

automated building permit system for Korea government.

Acknowledgement

This research was supported by a grant (14AUDP-

C067809-02) from Architecture & Urban Development

Research Program funded by Ministry of Land,

Infrastructure and Transport of Korean government.

References

[1] Jin-Kook Lee, Jaemin Lee, Yeon-suk Jeong, Hugo

Sheward, Paola Sanguinetti, Sherif Abdelmohsen,

Charles M. Eastman, Development of space

database for automated building design review

system, Automation in Construction, 24:203-212,

2012.

[2] C.M. Eastman, P. Teicholz, R. Sacks, K. Liston,

BIM Handbook—A guide to Building Information

Modeling for Owners, Managers, Designers,

Engineers, and Contractors, John Wiley & Sons

Inc., Hoboken, NJ, United States of America, 2008.

[3] C. Han, C. J. Kunz, and K. H. Law. Making

Automated Building Code Checking a Reality,

Facility Management Journal, 22-28, 1997.

[4] Greenwood, David, Lockley, Steve, Malsane, Sagar

and Matthews, Jane Matthews, Automated

compliance checking using building information

models, In Proceeding of The Construction,

Building and Real Estate Research Conference of

the Royal Institution of Chartered Surveyors, Paris,

France, 2010.

[5] C. Eastman, Automated assessment of early

concept design, article In Architectural Design

Special Issue: Closing the Gap, 79(2):52–57, 2009.

[6] Johannes Dimyadi, Robert Amor, Automated

Building code Compliance Checking Where is it at?,

In Proceedings of CIB WBC 2013, pages 172-185,

Brisbane, Australia, 2013.

[7] GSA, GSA courthouse program. On-line:

http://www.corenet.gov.sg/integrated_submission/

esub/esub_faqs.html, Accessed: 29/01/2015.

[8] Lan Ding, Robin Drogemuller, Julie Jupp, Mike A

Rosenman, Jhon S Gero, Automated code checking,

In Proceeding of Clients Driving Innovation

International Conference, pages 25–27, Surfers

Paradise, Qld, Australia, 2004.

[9] C. Eastman, Jae-min Lee, Yeon-suk Jeong, Jin-

kook Lee, Automatic Rule-based Checking of

Building Designs, Automation in Construction,

18(8):1011-1033, 2009.

[10] L. Ding, R. Drogemuller, M. Rosenman, D.

Marchant, J. Gero, Automating code checking for

building designs, In Proceeding of Clients Driving

Construction Innovation: Moving Ideas into

Practice, pages 113-126, Brisbane, Australia, 2006.

[11] W. Solihin, , C. Eastman, Classification of rules for

automated BIM rule checking development,

Automation in Construction, 53: 69–82, 2015.

[12] Jae-min Lee, Automated checking of building

requirements on circulation over a range of design

phase, ph.D. Dissertation, Georgia Institute of

Technology, 2008.

[13] Solibri. Solibri Model Checker. On-line:

http://www.solibri.com/products/solibri-model-

checker/, Accessed: 29/01/2015.

[14] Korea Legislation Research Institute, Building Act

and Enforcement of the Building Act, On-line:

http://elaw.klri.re.kr/kor_service/main.do,

Accessed: 29/01/2015.

