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Abstract—Three dimensional (3D) mapping of environ-
ments has gained significant research interest over the last
decades because of its important need for environmental
modeling and monitoring. There are many successful research
efforts in this field, and even it has been turned into
commercial products such as Velodyne Lidar [1]. However,
due to natural localization challenges, not much research for
3D mapping wearable sensor devices has been successfully
reported. In this paper, we are interested in building a smart
and wearable shoe which integrates multiple laser scanners
and an inertial measurement unit (IMU) to build a 3D map
of the environments. The proposed Smart Shoe can collect
data and build a real-time 3D map during human walking.
Such a smart shoe can support disabled people (blind people)
to easily navigate and avoid obstacles in the environment.
Additionally, this shoe can help firefighters quickly model and
recognize objects in the fired and dark smoke buildings where
the cameras may not be useful. The developed localization
algorithm using IMU can output a smooth and accurate pose
and trajectory of the human walking. This key importance of
the shoe localization enables 3D mapping successfully while
minimizing data registration error from the laser point cloud.

Keywords: Robotics, 3D Mapping, Real-time 3D Mapping
Algorithms, SLAM.

I. INTRODUCTION

Three dimensional (3D) mapping of an unknown en-
vironment is open and interesting research since it has
broad applications in environmental searching, exploring
and monitoring [2], [7], [13], [17]. There are some suc-
cessful research efforts in this field, and even it has been
turned into commercial products such as Velodyne Lidar
[1]. Integration of laser scanners or 3D LiDar sensor to
build a 3D map of the environment is reported in [3],
[11], [18], [21]. Their proposed 3D mapping systems
integrated on mobile vehicle can work on a large scale
of the environment, but they are not suitable for a device
with normally worm such as our shoe in this paper. Besides,
due to natural localization challenges [1], [4], [8], [19], not
much research for 3D real-time mapping wearable sensor
devices has been successfully reported.

It started from our observation of human motion gait
to propose an idea for designing a smart shoe which is
compact, comfortable and naturally wearable. There are
some potential applications of the proposed shoe. For
example, with 3D real-time mapping feature, the shoe can
help visually impaired users improve their navigation ca-
pabilities. Besides, the proposed shoe can help firefighters
quickly model and recognize objects in the fired and dark
smoke buildings where the cameras may not be useful.

The smart shoe design with wearable sensor devices
including laser scanners and inertial measurement unit
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(IMU) for 3D real-time mapping faces with several chal-
lenges. First, it requires a very compact design for the
natural movement of foot, especially when walking fast,
climbing up or down stairs, running or jumping. Second,
in order to build a 3D map, accurately tracking position and
orientation of a shoe is important [12], [15]. Finally, the
swing of laser scanning devices during the foot’s movement
increases noise of collected data and reduces the accuracy
of a 3D map.

To deal with these challenges, by utilizing the human gait
motion, we first propose a simultaneous human foot motion
localization algorithm to accurately and smoothly output
the foot position. We then calibrate the laser scanning data
with the foot’s pose to enable a 3D mapping. This result can
be a frame work for other applications of mobile wearable
devices for 3D mapping in real-time not only the shoe.

The remaining of the paper is organized as follows. The
next section presents an overview of the smart shoe de-
sign. Section III presents the real-time human foot motion
localization scheme. The 3D mapping algorithm for the
smart shoe is presented in Section IV. Section V presents
experimental results to demonstrate the effectiveness of the
proposed smart shoe. Finally, the conclusion and future
work is discussed in Section VI.

II. OVERALL DESIGN OF A SMART SHOE

A. Design of a Smart Shoe

The smart shoe sketch is depicted in Fig. 1 and its
components are presented in Fig. 2. Two Hokuyo laser
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Fig. 1. A Smart Shoe design

scanners are mounted on the front and rear sides of the
shoe. Due to different mounting locations, the lasers have
different detected/scanned areas, detected distances, num-
ber of points per scanning, and the output result rate. In this
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Fig. 2. A Smart Shoe Components

design, the shoe is considered as a rigid body frame [5] and
includes three sub body frames: LaserScanner1, IMU ,
and LaserScanner2. The distance between two centers
O1 of LaserScanner1 frame and O2 of LaserScanner2
frame is dO1O2 , and the axis O1O2 is parallel with
the bottom of the shoe background. The body frame of
LaserScanner1 is the same as the body frame of the shoe.
Hence, O1 is equivalent to OS of the SmartShoe body
frame center. The IMU sensor is mounted under the Laser
Scanner 1. We decided that the IMU body frame is also
the same as the SmartShoe body frame. So the original
center OI of IMU body frame, OS of SmartShoe body
frame, and of course the O1 of LaserScanner1 body
frame are equivalent to, OS ≡ O1 ≡ OI , as in Fig. 1.
The angle rate of IMU (Roll, Pitch, Y aw) during foot
movement is also the angle rate of LaserScanner1 body
frame and shoe body frame movement. The angle rate of
LaserScanner2 frame movement is equal to (Roll, Pitch
+ β̂O1O2

, Y aw) in which (Roll, Pitch, and Y aw) are the
angle rates of IMU , LaserScanner1 and SmartShoe,
respectively.

In this design, we assign the coordinate sys-
tem of SmartShoe body frame (XS , YS , ZS) and
LaserScanner1 body frame (X1, Y1, Z1) to be the same
as IMU inertial coordinate system (XI , YI , ZI ) as shown
in Fig. 1. The Z axises in these body coordinate systems
are down. The X1, XI , and XS are equivalent to Roll
angle axis of the shoe. The Y1, YI , and YS are equivalent
to Pitch angle axis of the shoe. And Z1, ZI , and ZS are
equivalent to Y aw axis of the shoe.

B. Scanning Field of the Smart Shoe

The scanning field of this Smart Shoe is very crucial
for the success of building a 3D map. Because one of
important requirements of this Smart Shoe is to be able
to scan a full 3600 above the background for a 3D map
building (see Fig. 3). Missing any part of this half sphere
can lead to the failure of a full 3D map. By observing a gait
cycle of human foot motion (see Fig. 4), we discovered that
the changing angle of the foot could help the shoe scan a
maximum 5π/6 of Pitch angle above the background. This
angle change depends on the walking speeds [20] [22].

Hence, by integrating two Laser Scanners on a shoe, the
scanning field of the Smart Shoe may reach to a maximum
covered angle of 5π/6 in the Pitch angle axis as can be
seen in Fig. 3.
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Fig. 3. The Smart Shoe Scanning Field by Gait phase

In Fig. 3, the yellow circle pie is a detected area of the
Laser Scanner 2 and the green circle pie is a detected area
of the Laser Scanner 1. The 3D space volume covered by
the scanning yellow and green color areas is the scanning
field of the Smart Shoe moving from the Stance phase to
the Swing phase. Otherwise, the gait and positions of this
movement can be divided into two phases and 8 positions
[20] [22], respectively, such as in Fig. 4. The maximum
scanning angle of Laser Scanner 1, γ̂1,61 , and Laser Scanner
2, γ̂1,62 , can be estimated at the position 1 and 6 of the
human gait in Fig.4 and Fig. 3.

Fig. 4. The Human Motion Gait Phase

However, we usually walk on a flat background, or the
real scanning angle composed by both laser scanners 1 and
2 is obtained as:

γ̂1,61U = γ̂1,61 − γ̂1,61L (1a)

γ̂1,62U = γ̂1,62 − γ̂1,62L (1b)

γ̂b = π − (γ̂1,61U + γ̂1,62U ), (1c)



where γ̂1,61U is a real scanning angle of Laser Scanner 1
above the background, γ̂1,62U is a real scanning angle of
Laser Scanner 2 above the background, and γ̂b is un-
scanned angle of this Smart Shoe. The estimation value
of the un-scanned angle is γ̂b is π/6 ≤ γ̂b ≤ π/3 [20]. We
can see intuitively this estimation from Fig. 5.
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Fig. 5. The Smart Shoe Scanning Field Estimation

Depending on the walking speed, the un-scanned angle
of the Smart Shoe can be from π/6 to π/3. In the normal
walking speed it is about π/4. However this lacking volume
can be compensated by the scanning volume of the next
walking step. Hence this design can warranty to scan fully
a 3D map of the half sphere of the environment around the
human foot motion.

C. Data Collecting and Processing

Based on the design of the Smart Shoe above, we can
definitely calculate the 3D position of any scanning point
from laser scanners in their body frame and then transform
them into the NED (North East Down) frame [6], [9],
[10]. For a general case, we assume in the Smart Shoe is
designed so that the Laser Scanner 1’s detection area dA0

1

and Laser Scanner 2’s detection area dA0
2 are different. The

maximum detected distance at any scanning time t of any
point i of Laser Scanner 1, dt1(i), and that of Laser Scanner
2, dt2(i), are different (see Fig. 6 and 7). The number of
points for each degree of Laser Scanner 1 and 2 are also
different, nP1 and nP2. Hence, the Laser Scanner 1 has
total scanning points of a laser scanning field Dmax

1 ∗nP1

points and Dmax
2 ∗nP2 points for the Laser Scanner 2. The

duration time for a full scan of Laser Scanner 1 is δ1t, and
Laser Scanner 2 is δ2t, δ1t 6= δ2t. And the duration time for
IMU sensor respondent is δIt. Normally δIt is thousand
times smaller than δ1t and δ2t.
Our target now is to calculate all scanning points returning
from each of these laser scanners and then transform them
into the NED frame system. We can obtain a 3D cloud
points data set of the scanned environment. From this data
set, we can calibrate and match them together for building
a 3D map.

  

Fig. 6. Laser Scanner 1

1) Front Laser Scanner 1 Data: In this sub section, we
convert each point getting from Laser Scanner 1 into its
3D body frame such as in Fig. 6. Let Y1O1Z1 be the
coordinate of the body frame of Laser Scanner 1. The 3D
coordinate values of any point i at any scanning time t of
Laser Scanner 1 can be obtained:

xt1(i) = 0.0 (2a)
yt1(i) = dt1(i) ∗ cos(αt

1(i)) (2b)
zt1(i) = dt1(i) ∗ sin(αt

1(i)) (2c)

Where αt
1(i) and i are as follows:

if imin
1 ≤ i < i01 then αmin

1 ≤ αt
1(i) < 2π

if i01 ≤ i ≤ imax
1 then 0.0 ≤ αt

1(i) ≤ αmax
1

imin
1 = 0, i01 = ((Dmax

1 − π)/2− π) ∗ nP1,
imax
1 = Dmax

1 ∗ nP1

αmin
1 = (π − (Dmax

1 − π)/2), α0
1 = 0.0,

αmax
1 = (Dmax

1 − π)/2

Because we designed the LaserScanner1 body frame,
IMU body frame and SmartShoe body frame equiva-
lently, OS ≡ O1 ≡ OI , we can easily transform a 3D point
coordinate (xt1(i), yt1(i), zt1(i)) of Laser Scanner 1 into the
SmartShoe body frame (xt1SS(i), yt1SS(i), zt1SS(i)) by:

xt1SS(i) = xt1(i) (3a)
yt1SS(i) = yt1(i) (3b)
zt1SS(i) = zt1(i) (3c)

The index SS in these equations means coordinate value
in the SmartShoe body frame. Now we only need to
transform one more time this a 3D coordinate value from
SmartShoe body frame into the Earth frame, NED as
discussed in the subsection II-D.

2) Rear Laser Scanner 2 Data: The rear Laser Scanner
2 body frame has a different angle β̂O1O2

with the other.
It has a distance dO1O2 between its and the Laser Scanner
1’s body frame. We can select a segment O1O2 as O2X2

axis, O2Y2 is parallel with O1Y1, and finally O2Z2 is a
β̂O1O2

angle different with O1Z1 such as in Fig. 1. The
LaserScanner2 body frame is explained in Fig. 7.



  

Fig. 7. Laser Scanner 2

Equations converting the distance of any point i in any
scanning time t returning from Laser Scanner 2 into a 3D
coordinate of LaserScanner2 body frame are:

xt2(i) = dt2(i) ∗ sin(αt
2(i)) (4a)

yt2(i) = dt2(i) ∗ cos(αt
2(i)) (4b)

zt2(i) = 0.0 (4c)

Where αt
2(i) and i are as follows:

if imin
2 ≤ i < i02 then αmin

2 ≤ αt
2(i) < 2π

if i02 ≤ i ≤ imax
2 then 0.0 ≤ αt

2(i) ≤ αmax
2

imin
2 = 0, i02 = ((Dmax

2 − π)/2− π) ∗ nP2,
imax
2 = Dmax

2 ∗ nP2

αmin
2 = (π − (Dmax

2 − π)/2), α0
2 = 0.0,

αmax
2 = (Dmax

2 − π)/2

Then processing of the rear Laser Scanner 2 data
is to transform (xt2(i), yt2(i), zt2(i)) in its body coordi-
nate system into the SmartShoe body coordinate system
(xt2SS(i), yt2SS(i), zt2SS(i)) as:

xt2SS(i) = (xt2(i) + dO1O2
) ∗ cos(β̂O1O2

) (5a)
yt2SS(i) = yt2(i) (5b)

zt2SS(i) = (xt2(i) + dO1O2
) ∗ sin(β̂O1O2

) (5c)

Where dO1O2
is the distance between O1 and O2 and

β̂O1O2
is the different angle between segment O1O2 and

axis O1X1.

D. Transforming Laser Scanning Data into NED frame

This is an important step to process laser scan-
ning data. Assume that we have a point P t

SS(i) =
(xtSS(i), ytSS(i), ztSS(i)) in the Smart Shoe body frame,
this point is any point i in the data set getting from either
Laser Scanner 1 or 2 at a time t. We need to transform all
points in this data set into the NED frame system. The
transformation of any point i at any scanning time t from
the SmartShoe data body frame into the NED frame can
be obtained as:

P t
eSS(i) = M t

NED ∗ P
t
SS(i), (6)

where M t
NED = M

t|t
NED is a transformation matrix in

Equ. (30) which transforms from the SmartShoe body
frame into the NED frame.

III. FOOT MOTION LOCALIZATION FOR A SMART SHOE

This section presents the foot localization algorithm to
enable the 3D mapping. The high accuracy of foot’s pose
estimation is necessary for matching laser scanning data
during walking.

A. Real-time Human Foot Motion Location Algorithm

The general diagram of the human foot motion localiza-
tion algorithm can be seen in Fig. 8. The ZVU is applied
in the stance phase detection of human gait at time t of the
IMU output frequency to estimate the drift error of velocity
δvt

b and angular rate δwt
b.
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Fig. 8. The general Real-Time INS/EKF ZVU HDR algorithm diagram

δvt
b = vt

b. (7)

δwt
b = wt

b. (8)

The Heuristic Heading Reduction (HDR) [14] is applied
to compute the heading error of foot motion, in X axis or
Y aw angle. δψt is the drifted Y aw angle of foot motion
at time t. The drifted errors of the yaw angle δψt obtained
by HDR, velocity δvt

b and angular rate δwt
b obtained by

ZVU form a vector of actual error measurement mt for
the EKF.

mt = (δψt, δwt
b, δv

t). (9)

The output of the EKF estimation at time t − 1 is a
15 elements error state vector δXt−1|t−1. This error state
vector is used to correct the estimated values of velocity,
position, and attitude for the INS module (see Fig. 8).

δXt−1|t−1 = δXt−1(δϕt−1, δwt−1, δpt−1, δvt−1, δat−1
b ).
(10)



where δϕt−1, δwt−1, δpt−1, δvt−1, and δat−1
b represent

attitude, angular rate, position, velocity, and acceleration
error, respectively. The error state transition of the EKF at
time t is obtained:

δXt|t−1 = ΦtδXt−1|t−1 + wt−1. (11)

where δXt|t−1 is the predicted error state at time t,
δXt−1|t−1 is the EKF state error at time t − 1, and
wt−1 is the process noise with covariance matrix Qt−1 =
E(wt−1(wt−1)T ). The Φt with its size of 15 × 15 is
defined in Equ. (12).

Φt =


I Φt(01) 0 0 0
0 I 0 0 0
0 0 I Φt(23) Φt(24)

Φt(31) 0 0 I Φt(34)
0 0 0 0 Φt(44)

 (12)

where, I is an unit 3× 3 matrix, 0 is a zero 3× 3 matrix.
Φt(01) = ∆(t) ·M t|t−1

NED,Φ
t(23) = ∆(t) · I

Φt(31) = −∆(t) · S(atn′),Φ
t(34) = ∆(t) ·M t|t−1

NED

Φt(24) =
−∆(t)2

2
· S(atn′),Φ

t(44) = −∆(t) · S(atn′)

The term S(atn′) in Equ. (12) is the skew symmetric
matrix for accelerations to help the EKF estimate Roll and
Pitch.

S(at
n′) =

 0 −at
n′(2) at

n′(1)
at
n′(2) 0 −at

n′(2)
−at

n′(1) at
n′(0) 0

 (13)

where, at
n′ is the bias-corrected acceleration in the navi-

gation frame or the NED frame.

at
n′ = M

t|t−1
NED · a

t
b′ (14)

where, M t|t−1
NED is a transformation matrix defined in Equ.

(16). At time t of IMU output data, we get raw value of
acceleration and angular rate from IMU in its body frame:
at
b, wt

b, respectively.
We then compute the bias compensation for acceleration

at
b′ and angular rate wt

b′ from the EKF error state vector
δXt−1|t−1, Equ. (10):

wt
b′ = wt

b − δwt
b (15a)

at
b′ = at

b − δat
b (15b)

The transformation matrix M
t|t−1
NED at time t that trans-

forms the data in the IMU body frame into the navigation
frame or the NED frame:

M
t|t−1
NED = M

t−1|t−1
NED · 2I3×3 + δΩt−1 ·∆(t)

2I3×3 − δΩt−1 ·∆(t)
, (16)

where, δΩt−1 is skew symmetric matrix for angular rate:

δΩt−1 =

 0 −wt−1
b′ (2) wt−1

b′ (1)
wt−1

b′ (2) 0 −wt−1
b′ (0)

−wt−1
b′ (1) wt−1

b′ (0) 0

 (17)

where, wt−1
b′ computed by Equ. (15a), M

t−1|t−1
NED is the

last rotation matrix updated by the EKF at the previous

step t − 1. At the first time t = 1, we can estimate the
M

1|0
NED as

M
1|0
NED =

M00 M01 M02

M10 M11 M12

M20 M21 M22

 (18)

where, M00 = c(γ)c(β),M01 = c(γ)s(α)s(β) −
c(α)s(γ),
M02 = s(α)s(γ) + c(α)c(γ)s(β),M10 = c(β)s(γ),
M11 = c(α)c(γ)+s(α)s(γ)s(β),M12 = c(α)s(γ)s(β)−
c(γ)s(α),M20 = −s(β),M21 = c(β)s(α),M22 =
c(α)c(β). Here, c and s are cosine(), sine() functions,
respectively, and α, β, and γ are roll, pitch and yaw angles
of the foot, respectively [14].

The EKF error state at time t can be obtained by

δXt|t = δXt|t−1 + Kt · [mt −HδXt|t−1] (19)

where, Kt−1 is the Kalman gain defined in Equ. (22); mt

is defined in Equ. (9) and H is a measurement matrix:

H7×15 =

O1
1×3 O0

1×3 O0
1×3 O0

1×3 O0
1×3

O3×3 I3×3 O3×3 O3×3 O3×3
O3×3 O3×3 O3×3 I3×3 O3×3


(20)

where, O1
1×3 = [0 0 1], O0

1×3 = [0 0 0], I3× 3 is a 3× 3
unit matrix, and O3×3 is a 3× 3 zero matrix.
The measurement model of the EKF is defined as

zt = HδXt|t + nt (21)

where, nt is the measurement noise with covariance matrix
Rt = E(nt(nt)T ).

The Kalman gain is obtained by

Kt = P t|t−1HT (HP t|t−1HT + Rt)−1, (22)

where P t|t−1 is the estimation error covariance matrix
which is computed at times t of IMU output consequence:

P t|t−1 = Φt−1P t−1|t−1(Φt−1)T + Qt−1 (23)

where, the previous P t−1|t−1 is computed by the Kalman
gain at time t− 1 in Equ. (24):

P t−1|t−1 = (I−Kt−1H)P t−1|t−2(I−Kt−1H)T (24)

where, I is unit 15× 15 matrix. Now we can compute
the acceleration at

e of human motion in the NED frame
by converting the bias-compensated acceleration from Equ.
(15b) to earth navigation frame NED then subtracting the
gravity acceleration vector ge = (0.0, 0.0, 9.8m/s2):

at
e = M

t|t−1
NED · a

t
b′ − ge. (25)

Then the velocity in earth NED frame prior the EKF cor-
rection at time t is obtained by integrating the acceleration
between two consequence outputs of IMU:

vt|t−1 = vt−1|t−1 + at
e ·∆(t). (26)

This velocity is integrated one more time to compute the
foot position in Earth navigation frame:

pt|t−1 = pt−1|t−1 + vt|t−1 ·∆(t). (27)



Finally, we apply the error state vector from EKF in Equ.
(19) to correct the values of velocity in Equ. (26), position
in Equ. (27), and attitude in Equ. (16).

vt|t = vt|t−1 − δvt|t (28)

pt|t = pt|t−1 − δpt|t (29)

M
t|t
NED =

2I3×3 + δΘt−1

2I3×3 − δΘt−1
·M t|t−1

NED (30)

where:

δΘt−1 = −

 0 −δϕt−1(2) δϕt−1(1)
δϕt−1(2) 0 −δϕt−1(0)
−δϕt−1(1) δϕt−1(0) 0


(31)

where, δϕt−1 is the EKF error state for attitude at previous
time t− 1 obtained by Equ. (19).

B. Calibrating Laser Data with Foot Motion Trajectory

Laser data point P t
eSS(i) in the NED system should

be calibrated with the foot motion trajectory so that we
can obtain a correct map of the environment. Because the
SmartShoe body frame centered at OS is equivalent to
the IMU body frame centered at OI , the trajectory of foot
motion based on the movement of SmartShoe rigid body
system OS is equivalent to OI . This also means that the
real-time position of OI or trajectory of foot movement is
the root for every laser point P t

eSS(i) in a 3D map. Hence
we can compute the real-time position of all 3D mapping
points of the surrounding environment along with the foot
movement P t

NED3D(i):

P t
NED3D(i) = P t

eSS(i) + pt (32)

where, the pt = pt|t is a 3D position on the human foot
motion trajectory at time t in the NED frame.

IV. REAL-TIME 3D MAPPING ALGORITHM

The real-time 3D mapping algorithm is presented in
Fig. 9. The algorithm designed based on ROS (Robotic
Operating System) [16] starting by the Start event to mount
Laser Scanner 1, 2 and IMU sensor. The result of this event
is three new Listener nodes: L2−Listener, L1−Listener
and I − Listener for Laser Scanner 1, 2 and IMU ,
respectively. Each of them operates independently and
parallel each other.
Because their output rate data is different, the waiting
time δt1, δ

t
2, and δtI are different. Whenever these devices

finish their collecting data phase, they make an interruption
for their Listener nodes. Then these agents describe the
collected data to other modules waiting for processing this
data.

In this diagram, Comp P t
2(i),P t

1(i) and EKF INS
pt are the processing modules. The modules P t

2(i) and
P t

1(i) process the stream data from Laser Scanner 1 and
2 , respectively. They convert the distant point i in the
scanning data at time t into the 3D coordinate data in the
Smart Shoe body frame by the Equ. (2), (3), (4), and (5).
Then, the module P t

eSS(i) transforms this data from Smart
Shoe body frame into the Earth NED system by the Equ.
(6).

End

Start

I-Listener

EKF INS pt

Calibrating 3D laser data with Foot Trajectory

Real-time 3D Map

mounting IMU

describe wt,at,mt data

waiting

position pt

ending

L2-Listener

Comp P t
2SS(i)

P t
eSS(i)

mounting L2

ending

describe dt
2(i)

waiting

transform to NED

L1-Listener

Comp P t
1SS(i)

P t
eSS(i)

mounting L1

ending

describe dt
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Fig. 9. A Real-time 3D Mapping Algorithm

The I − Listener node of IMU sensor gets the stream
data from IMU and then describe it to EKF INS pt module.
This module bases on the acceleration, angle rate, and mag-
netic data from IMU description to integrate the velocity,
position of foot motion in a very small respondent duration
time of IMU to I-Listener. This process is supported by the
EKF filter presented in the previous section. The EKF INS
filter helps minimize accumulated errors from IMU drift
by time. This EKF INS pt module outputs an accurate
trajectory data of foot motion.

The module ”Calibrating 3D laser data with Foot Tra-
jectory” processes the calibration of the foot trajectory data
with 3D laser data to build a 3D map of the environment.

V. EXPERIMENTAL RESULTS

We implemented the design of the Smart Shoe in Fig.
1 on a Puma sport shoe with a white soft ring around
it’s header as shown in Fig. 10. On the white soft ring,
we attached two Hokuyo URG-04LX-UG01 laser scanners
and one MicroStrain 3DM-GX3-25 IMU sensor.

The design and implementation of the white soft ring
follows all requirements of the Smart Shoe design in Fig.
1. Namely, Hokuyo 1 is attached on the Laser Scanner 1
position, and Hokuyo 2 is attached on the Laser Scanner 2
position, and MicroStrain 3DM-GX3-25 IMU is attached



  

Hokuyo 1

Hokuyo 2

IMU       

Fig. 10. A Smart Shoe implementation

under the Hokuyo 1.
The white soft ring in this implementation is tight on

the shoe by the shoe string. This white soft ring has two
important roles. It is hard enough to be able to attach
all devices on the shoe tightly. But it also warranties the
required designing angle between Hokuyo 2 body frame
and Smart Shoe body frame. The white soft ring here also
makes Smart Shoe light and comfortable for wearing and
it can be unplugged from the shoe easily. All integrated
devices can be connected with a computer by USB cables.

Two Hokuyo laser scanners in this implementation
have identical technical specifications: the detection area
Dmax

1 , Dmax
2 is 2400, the number of scanning points

nP1, nP2 for each degree of scanning detection area is ap-
proximated 3 points, and the maximum detection distance
dt1(i), dt2(i) is less than or equal to 4,000 mm. Time of a
full scan of 2400 is nearly 0.8 s. The distance dO1O2 is
0.22 m. The different angle β̂O1O2 is π/6.

All collected data is processed by the proposed real-
time mapping algorithm as presented in Fig. 9. It is coded
by C++ language and runs on the Hydro ROS (Robotic
Operating System) platform. We tested our Smart Shoe
inside the 3rd floor in the Scrugham Engineering and
Mines (SEM) building, University of Nevada, Reno (UNR)
campus. The speed of walking was different: normal, slow,
fast and very fast. The Smart Shoe collected more than 3
millions of 3D points for this hallway and the size of raw
data set for one time collection is over 135Mb data.

Fig. 11 presents a 3D mapping result of the SEM
hallway. Namely, Fig. 11 (1) is the trajectories of the foot
with normal walking speed (about 1.28 m/s) plotted on
the 2D floor plan of the 3rd of the SEM building. We
can see that the accuracy of the human localization with
IMU is very high since the starting and ending location
are very close together, and the trajectory matches with
the floor plan. Fig. 11 (2) is the online 3D map of the
hallway created by the proposed Smart Shoe during the
walking. The Fig. 11 (3) (a),(b),(c), and (d) are zoom-in
maps at some locations of the 3D map in Fig. 11 (2) to
intuitively shown the quality of the 3D scanning map by
the proposed Smart Shoe.

VI. CONCLUSION AND FUTURE WORK

This paper proposed a new comfortable wearing device,
Smart Shoe, for building a real-time 3D map of the
surrounding environment. By wearing this shoe the user
can normally work and build the map simultaneously.
The overall design of the shoe with details of sensor
integration, data collection, transformation and processing
was reported. The human foot localization algorithm was
proposed to accurately track and localize the foot motion
for matching laser scanning data. The 3D real-time map-
ping algorithm was introduced to allows the user to build
a map of the environments. Experimental results of the
foot motion localization and 3D mapping are conducted to
demonstrated the proposed approaches.
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