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ABSTRACT 

 

Site layout planning has been widely investigated 

in the literature as a means of minimising 

transportation costs, improving safety etc. The 

majority of the research conducted focuses on 

developing adequate formulations capable of 

producing optimum results. However, there is a lack 

of consensus on a particular format to implement for 

the problem, particularly in regards to the 

assumptions and constraints to be adopted. Distance 

between facilities, which is an important measure in 

site layout planning, has been modelled in several 

ways, all in the hope of producing reasonable 

approximations to the path followed by workers, 

machinery etc. between facilities. This paper aims to 

compare the performance of several models of the 

site layout problem. The objective function 

considered in this study is the transportation cost of 

material movement between facilities. A main mixed 

integer programming model is proposed to represent 

the site layout problem and a comparison is carried 

out against a relaxed variant, where travel distances 

are approximated. Further, a constraint generation 

algorithm is presented in a bid to improve the 

computational performance of the main model. 
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1 Introduction 

It is vital to carefully consider the site layout 

adopted on a construction site as performance and cost 

expended during construction can be directly affected 

by the location of different facilities on the site. [1]. The 

task of finding an appropriate allocation for construction 

facilities is dubbed as site layout planning (SLP). The 

SLP problem is an extensively investigated area in the 

construction research community, and interest in this 

subject has been constantly growing in the past decade 

or so with the drastic surge experienced in computer 

power and performance. The problem originally stems 

from the facility layout problem, developed in industrial 

operational research, where the goal is to minimise 

travel distances between departments labelled as 

facilities [2,3]. In the construction field, the problem 

comprises the allocation of work facilities to predefined 

spaces within a construction site, where an objective 

function is assigned to determine the direction of the 

optimisation [4,5]. In the literature, different objective 

functions have been embraced, ranging from functions 

that minimise safety hazards, minimise wildlife 

interference, minimise constraint violation and minimise 

construction noise levels, to the more common goal of 

minimising transportation and material handling costs 

[6–13]. Multiple objectives have also been implemented, 

where several of the aforementioned objectives are 

addressed all at once [14–19]. A look through the 

literature also reveals that the majority of problems are 

solved using metaheuristic techniques, where the 

reliance of these algorithms is more on random search 

[20–26]. This being said, there are instances however 

where the problem has been addressed using exact 

mathematical techniques [27,28]. Unlike stochastic 

search, mathematical programming allows for a global 

optimum solution to be reached. The only drawback is 

that, even though no formal proof yet exists, the 

construction SLP problem is thought to be NP-complete, 

and with computational solving times exceeding those 

that result from meta-heuristic techniques, adopting an 

exact method can result in computational inefficient 

solutions [29]. This can also mean that a more relaxed 

formulation might need to be adapted when solving 

such kind of problems.  

For the material handling objective function, which 

will be the main focus of this paper, several approaches 

have been applied in the literature for estimating the 

distance travelled between two facilities on the 

construction site. These approaches rely on the 

approximation of the transportation route through the 

use of either the Euclidean or Manhattan distance 

measure. In the Euclidean method, the routes are taken 

to be diagonal lines extending from the centroids of the 

corresponding facilities between which movement is 



necessary [18,24,27,30,31]. The Manhattan approach 

relies on robotic movements in four directions at 90 

degrees to one another [32,33]. The aforementioned 

approaches have their strengths and weaknesses but one 

thing common to both is their over-simplification of the 

actual route typical in a construction site, where 

obstacles such as facilities etc. might prevent a purely 

diagonal or rectilinear movement from being achieved. 

For this reason it is necessary to take into account such 

limitations when it comes to modelling distance 

measures. Therefore a model that tackles some of these 

issues is presented by the authors. A comparison will 

ensue to determine whether it’s worthwhile to 

overburden the model with additional constraints to 

produce more realistic route mappings within the 

objective function. It is worth mentioning that the 

Euclidean approach seems much of a simplistic 

approximation as path obstruction and the possibility of 

passing through forbidden areas is completely ignored. 

Thus in this study the focus will mainly be on routes 

modelled via the Manhattan approach. 

A computational assessment of SLP models is 

necessary to ensure that efficient solutions are being 

generated in reasonable amounts of time. In many of the 

studies reviewed on SLP the reported computational 

times of exact optimisation algorithms usually exceed 

what would normally be within an acceptable range. 

According to Smith-Miles and Lopes [34] a couple of 

the many determinants of the instance difficulties of 

combinatorial methods include the parameters 

implemented as well as the feasible area outlined 

through the constraints adopted within the mathematical 

model. The more constrained a problem is the more 

restricted is its feasible region. This can lead to 

difficulties for the optimisation algorithm, particularly 

when the feasible landscape is characterised by a non-

convex shape, as is the case in combinatorial 

optimisation problems [35]. To the authors’ best 

knowledge no attempt has been made in the literature to 

analyse instance difficulty of the construction SLP 

problem. 

This paper presents a comparison between several 

mixed integer programming (MIP) models for solving 

the SLP problem, where the objective is to minimise 

transportation costs. Contrasting several SLP model 

formulations, where distance is highlighted as the major 

area of focus, aims to shed light on the variance in 

computational efficiency between the models. To this 

avail the results presented in this paper may be helpful 

in the selection of an appropriate model, in terms of 

route mappings, for a particular site layout problem, 

based on solution optimality and computational 

performance.  

 

2 Models for the SLP 

Three different SLP models are presented in this 

section, namely Model F-SLP, O-SLP and R-SLP. The 

main model, F-SLP, is used as the benchmark model 

against which all other models are compared. For this 

model a full representation of route mapping is provided 

where a forbidden region, modelled as the construction 

area building footprint, is taken into consideration, such 

that distance is measured based on corner mapping to 

prevent unreasonable travel paths on the construction 

site. Design constraints, consisting of non-overlap 

constraints, boundary constraints and travel interference 

constraints, are introduced to define the model.   Model 

O-SLP neglects the presence of a forbidden area and 

hence travel distance is assumed to be direct between 

facility centroids. For Model R-SLP, a constraint 

generation algorithm is introduced where the design 

constraints of Model F-SLP are first relaxed and then 

gradually added to the relaxed model (R-SLP) if they 

are violated. The problem is transformed so that the 

overall MIP model is broken down into smaller MIP 

models. To produce the MIP sub models in this relaxed 

model, any non-linearity present in the objective 

functions and/ or constraints is dealt with wherever 

possible through the adoption of common mathematical 

programming reformulations [36].    

 

2.1 Model Notation 

Tables 1-3 provide a list of the notations of sets, 

parameters and variables, respectively, adopted in the 

models. Any intermediate variables introduced later on 

in the paper which are not defined in the 

aforementioned tables will be detailed in the relevant 

sections. 

2.2 F-SLP: Forbidden Region SLP 

As was stated earlier, for the purpose of this study, 

Model F-SLP is taken to be the benchmark formulation, 

against which all the other presented models will be 

compared. The composition of this chief model consists 

of an objective function that tries to capture a realistic 

path planning approximation on construction sites, 

where obstacles such as facilities and construction 

building footprint area, are modelled and are taken into 

account as part of the constraints. Distance is assumed 

to be directly dependent on the exact position of the 

available spaces in which facilities are allocated, so that 

direct travel between adjacent locations is possible, 

whereas more manoeuvres need to be made between 

facilities located at far apart areas. The objective 

function along with the constraints, are presented below. 

 

 



Table 1 Set notation 
Notation Description 

T
F  

Set of all temporary facilities to be 

allocated a position on-site 

P
F  

Set of all permanent facilities with 

predefined positions on-site 

F :
T P

F F  Set of all facilities on site 

L  
Set of all available locations within 

which temporary facilities will be 

allocated 
M  

Set of all non-available locations, 

within which permanent facilities are 

allocated 
  , : ,

P
V i m i F m M    

 

Mapping each permanent facility to its 

pre-defined location 

m
C  

Set of corners assigned to each location

L Mm   

 

 

Table 2 Parameter notation 

Notation Description 

ijt
F  

Frequency of travel by transportation mode t, from facility 

i to facility j 

mn
  

Binary parameter which equals one if two locations m and 

n are deemed to be far from one another, and zero 

otherwise. 

im
  

Binary parameter which equals one if facility i has a 

predefined location m assigned to it, and zero otherwise. 

W  Width of construction site, in the horizontal x direction 

B  Length of construction site, in the vertical y direction 

i
Wf  Width of facility i in the x direction 

i
Lf  Length of facility i in the y direction 

m

p
BCX  x-coordinate of corner pat location m 

m

p
BCY  y-coordinate of corner p at location m 

mn

pq
D  

Distance between corners p and q located at locations m 

and n respectively 

m
CLX  x-coordinate of centroid of location m 

m
CLY  y-coordinate of centroid of location m 

m
WL  Width of location m in the horizontal x direction 

m
LL  Length of location m in the vertical y direction 

 

2.2.1 Objective Function 

The objective function (1) consists of a frequency 

parameter defined over facilities i and j and 

transportation mode t. The transportation mode can 

involve plants such as trucks, mixers etc. The frequency 

parameter is multiplied by a distance variable, which is 

defined by the distance constraints, to be discussed in 

the next section. 

 
t

ij ij

t i j

Minimise F d     (1) 

 

Table 3 Variable notation 

Notation Description 

ij
d  

Distance between facility i and j, 

such that i j  

s

ij
d  

Short Manhattan distance between 

facilities i and j positioned at 

locations deemed close to one 

another, such that i j  

mn

ij
d  

Long distance between facilities i
and j positioned at location deemed 

far from one another, such that i j  

x

i
c  x-coordinate of centroid of facility i 

y

i
c  y-coordinate of centroid of facility i 

 1
0,1 , :

x

ij T
i j F i j      

Equals one if 
x

i
c is less than the left 

border of facility j 

 2
0,1 , :

x

ij T
i j F i j      

Equals one if 
x

i
c is greater than the 

right border of facility j 

 1
0,1 , :

y

ij T
i j F i j      

Equals one if 
y

i
c is less than the 

bottom border of facility j 

 2
0,1 , :

y

ij T
i j F i j      

Equals one if 
y

i
c is greater than the 

top border of facility j 

 0,1 , :
x

ij T
i j F i j      

Equals one if facility iand jdo not 

overlap in the horizontal x direction 

 0,1 , :
y

ij T
i j F i j      

Equals one if facility i and jdo not 

overlap in the vertical y direction. 

 

2.2.2 Distance constraints 

The allocation of facilities to predefined locations 

decides the method by which distance is measured 

between facilities. For close-by facilities constraint (2) 

is deployed where the variable
s

ij
d is defined through 

constraint (4) as the absolute value distance between the 

facilities. For long distances, constraints (3) and (5) are 

applicable where distance is defined in terms of building 

area corners through which moving plants are required 

to pass in order to get to the final facility destination. 

The definition of corners p and q associated with 

locations m and n respectively, help in delineating an 

appropriate travel path. 

, : , 0
s

ij im jn ij mn

m L n L

d z z d i j F i j 
 

      (2)

, ,
, : , 1

mn

ij i m j n ij mn

m L n L

d z z d i j F i j 
 

      (3)



, :
s x x y y

ij i j i j
d c c c c i j F i j         (4)

 ,

,
min

, : , : 1
mn

m

n

x m y m x n y n m n

i p i p j q j q p q

mn

ij p C

q C

d c BCX c BCY c BCX c BCY D

i j F i j m n L 





        

     

(5) 

 

2.2.3 Allocation constraints 

 To ensure that each facility gets positioned in an 

appropriate space within the construction site, it is 

necessary to incorporate constraints (6)-(8). Constraint 

(6) states that for each temporary facility one space has 

to be allocated. Constraint (7) outlines the possibility of 

each space handling more than a single facility, while 

constraint (8) defines the positions of permanent 

facilities, through the matrix
im

  

 

 1
im T

m L

z i F F


         (6)

1

T

im

i F

z m L


        (7)

 1 , | 1
im im

z i m V        (8) 

 

2.2.4 Design  constraints 

2.2.4.1 Non-overlap constraints 

 

Constraints (9)-(11) define a feasible configuration 

in which either horizontal or vertical overlap between 

facilities is allowed, but not both. In particular 

constraint (9) controls the horizontal overlap while 

constraint (10) determines whether overlap is present 

vertically.  The presence of constraint (11) ensures that 

only one of constraints (9) or (10) is active at any one 

time.  

 

0.5( ) , :
x x x

i j i j ij T
c c Wf Wf i j F i j       (9)

0.5( ) , :
y y y

i j i j ij T
c c Lf Lf i j F i j               (10)

1 1 , : , :
x y

im jn ij ij
z z i j F i j m n L m n             (11) 

 

2.2.4.2 Boundary constraints 

 

Facilities are required to be located within the 

boundaries demarcated by the location to which they 

have been assigned. As such, constraints (12)-(15) are 

initiated. Constraints (12) and (13) force the facility to 

lie in between the vertical boundaries, while constraints 

(14) and (15) require the facility to be positioned within 

the horizontal boundaries. 

 

   0.5 0.5 (1 )
i i m m im im

cx Wf CLX WL z W z i F m L         (12)

   0.5 0.5
i i m m im

cx Wf CLX WL z i F m L       (13)

   0.5 0.5 (1 )
i i m m im im

cy Lf CLY LL z B z i F m L         (14)

   0.5 0.5
i i m m im

cy Lf CLY LL z i F m L          (15) 

 

2.2.4.3 Travel interference constraints 

 

To prevent collision into already allocated facilities 

during movements across the construction site, 

constraints (16)-(20) are effectuated. For there to be no 

vertical travel interference between two facilities at the 

same location, constraints (16) and (17) are deployed. It 

is also a requirement to prevent travel interference in the 

horizontal direction, and this is specified by constraints 

(18) and (19). To ensure that horizontal and vertical 

travel non- interference ensues at any one time, 

constraints (20) and (21) need to be activated. 

 
1

0.5 (1 ) , :
x x x

i j j ij T
c c Wf W i j F i j       (16) 

2
0.5 (1 ) , :

x x x

i j j ij T
c c Wf W i j F i j       (17)

1
0.5 (1 ) , :

y y y

i j j ij T
c c Lf B i j F i j       (18)

2
0.5 (1 ) , :

y y y

i j j ij T
c c Lf B i j F i j       (19)

1 2
1 1 , : , :

x x

im jn ij ij Tz z i j F i j m n L m n           (20)

1 2
1 1 , : , :

y y

im jn ij ij Tz z i j F i j m n L m n                (21) 

 

2.2.5 Domain of variables 

The final set of constraints, represented by 

constraints (22)-(26) are put in place to define the range 

of values which the variables involved in the model can 

take. All variables apart from
im

z which are defined as 

integer variables, as presented in table 3, are assumed to 

be positive and continuous.   

 

0
x

i
c i F                   (22) 

0
y

i
c i F                   (23)

0 , :
ij

d i j F i j                    (24)

0 , :
s

ij
d i j F i j                   (25)

0 , : , : 1
mn

ij mn
d i j F i j m n L                     (26) 

 

Model F-SLP is therefore represented by equations (1)-

(26). 



2.3 O-SLP: Open Region SLP 

Model O-SLP involves an adjustment to objective 

function (1) embedded in the chief model. Here, the 

distance measure between facilities is assumed to follow 

a Manhattan approach, whereby direct rectilinear routes 

are assumed between the centroids of the facilities. The 

resulting objective function is displayed in equation (27). 

The design constraints used in the previously explicated 

model are still applicable to Model O-SLP ((6)-(25)), 

except for the distance constraints ((2)-(5)), where 

corner points to avoid the forbidden region, this being 

the projects footprint construction zone, is neglected. 

The distance measure implemented for the variable
s

ij
d , 

as is shown in equation (28), is in a purely rectilinear 

form. 

 
t

ij

t i j

s

ijMinimise F d                 (27) 

, :
s x x y y

ij i j i j
d c c c c i j F i j                    (28) 

 

Model O-SLP is thus represented by equations (6-25) 

and equations (27) and (28). 

2.4 R-SLP: Relaxed SLP 

A relaxed model is presented where the SLP 

problem is solved in two stages. In the first stage the 

facilities are optimised across all predefined locations, 

with only a single set of constraints. The distance 

between the locations,
mn

D , is assumed to be given. The 

objective function and the associated constraints are 

defined by equations (29) and (30), respectively. No 

other constraints are included in the first stage. The 

model therefore initially solves for the location 

variables
im

z and
jn

z  

 
t

ij ij

t i j

Minimise F d                (29) 

, :
ij im jn mn

n L m L

i j F i jd z z D
 

                 (30) 

 

Once the first stage of the optimisation is complete, and 

all facilities have been allocated to their optimised 

positions, the second stage is initiated. This involves the 

implementation of L sub-optimisation problems where 

a model, termed FL(m) for each location m is solved 

such that design constraints (i.e. non-overlap constraints, 

the boundary constraints and the travel interference 

constraints) are applied. A solution, labelled
*

im
z , is 

generated once the first stage is solved. Cuts, defined by 

equations (31) and (32) are then introduced, in the form 

of additional constraints added to the model, depending 

on the feasibility of each sub-problem. The cuts 

introduced take the form of specifying which 

combinations of the facilities are forbidden, assigned by
*

im
z , at location m where the design constraints are 

violated. This process is repeated until a globally 

feasible configuration is obtained. The Pseudo code of 

this constraint generation algorithm is displayed in 

Figure 1.  

 

*
: 1

1

T im

mim

i F z

N m Lz
 

                   (31) 

*

T

m im

i F

N z m L


                    (32) 

 

 

 
 

 Figure 1. Pseudo code of constraint generation 

algorithm developed for Model R-SLP 

3 Application and Numerical Results 

To establish a relative ground for comparing the 

models presented in this paper, a hypothetical case 

example is employed. The case study represents a 

construction site with a project comprising of a large 

shopping centre. A general purpose solver, namely 

CPLEX, is used to solve all three models [37]. A single 

type of solver is adopted to ensure a fair comparison 

between the three models. The shopping centre building 

footprint, along with the predefined locations within the 

construction site are displayed in Figure 2. 

The comparison was carried out on the basis of 

computational time and the value of the obtained 

optimum solution from each model. The final solution 

garnered from the model signifies the total monetary 

cost of moving material around the construction site, 

measured in Australian dollars. Table 4 displays the 

facilities to be allocated along with their dimensions. 

The travel frequency parameters, assumed between the 

facilities, are presented in Tables 5-7. Three frequency 

tables are shown since it is assumed that three different 

transportation modes are deployed to move materials 



between facilities. Only on-ground transportation is 

considered, as it is presumed that the materials are 

unloaded at depot areas located outside the construction 

project area footprint, from which aerial transportation 

via tower cranes is then employed.  

 

 
 

Figure 2. Construction site dimensions 

 

Figure 3 is a graph of the computational time spent 

in reaching the optimum solution by each of the three 

models. It is clear that Model F-SLP, where a 

computational time of 1330 seconds is recorded, takes 

longer in comparison with the rest models. The other 

two models were much quicker having recorded 

computational times of 86 seconds and 162 seconds for 

Model O-SLP and Model R-SLP, respectively. The 

quickest model to produce results was therefore Model 

O-SLP. If these results are weighed with those 

displayed in Figure 4, where the optimum solution 

values obtained are depicted, then it becomes evident 

that Model F-SLP is the one that fairs best in terms of 

the solution value obtained but not in terms of the 

computational time required to achieve it. That is 

because Model F-SLP contains many details yet is the 

model that produces the global optimum solution. By 

adopting the objective function of Model F-SLP as the 

evaluating point for solution values obtained by the 

different models, Model O-SLP is found to perform 

well when computational time and optimum solution 

value are considered since when compared against the 

solution of Model F-SLP, a 1.5 % difference in cost 

value is observed, with Model O-SLP producing a site 

layout configuration carrying a cost of $29012, whereas 

Model F-SLP results in a cost of $28583. Model R-SLP 

outputs a value of $30141, generating the highest cost 

site layout configuration, with a deviation of 5.4% from 

the global optimum solution derived from Model F-SLP. 

It is worth noting that the solution generated by Model 

R-SLP is likely to be sub-optimal due to the dissection 

of the optimisation process into stages.  

The results obtained from Models O-SLP and R-SLP, 

where the minor differences in monetary costs of the 

resulting facility configurations, and the speed at which 

such solutions were fashioned, highlight the potential of 

producing reasonable results by a relaxed model in 

shorter time periods. The results of the site layout 

configurations generated from each of the three models 

are shown in Table 8. 

 

Table 4. Temporary Facilities 

Facility Symbol 

Width in x-

direction  

(m) 

Length in y-

direction  

(m) 

Steel Yard F1 8 8 

Formwork Assembly F2 8 8 

Concrete Batch Plant F3 8 8 

False Work F4 8 8 

Offices F5 8 8 

Warehouse F6 8 8 

Generator Room F7 8 8 

 

 
 Figure 3. Computational performance of the 

three models 

 

 Figure 4. Optimum transport costs obtained by 

the three models. 
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Table 5. Frequency of travel of Forklift Truck between facilities 

Facility i 
Facility j 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 

F1 0 7000 200 4500 20 13000 10 24000 24000 24000 24000 

F2 7000 0 1000 2000 20 8900 10 14000 14000 14000 14000 

F3 200 1000 0 30 20 10000 10 50 50 50 50 

F4 4500 2000 30 0 20 7500 10 11000 11000 11000 11000 

F5 20 20 20 20 0 10 10 10 10 10 10 

F6 13000 8900 10000 7500 10 0 10 9000 9000 9000 9000 

F7 10 10 10 10 10 10 0 10 10 10 10 

F8 24000 14000 50 11000 10 9000 10 0 4000 4000 4000 

F9 24000 14000 50 11000 10 9000 10 4000 0 4000 4000 

F10 24000 14000 50 11000 10 9000 10 4000 4000 0 4000 

F11 24000 14000 50 11000 10 9000 10 4000 4000 4000 0 

 

Table 6. Frequency of travel of Dropside Truck between facilities 

Facility i 
Facility j 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 

F1 0 40200 300 20000 10 33000 10 6000 6000 6000 6000 

F2 40200 0 370 23000 10 26700 10 4700 4700 4700 4700 

F3 300 370 0 50 10 30000 10 75 75 75 75 

F4 20000 23000 50 0 10 18000 10 3500 3500 3500 3500 

F5 10 10 10 10 0 10 10 10 10 10 10 

F6 33000 26700 30000 18000 10 0 10 900 900 900 900 

F7 10 10 10 10 10 10 0 10 10 10 10 

F8 6000 4700 75 3500 10 900 10 0 250 250 250 

F9 6000 4700 75 3500 10 900 10 250 0 250 250 

F10 6000 4700 75 3500 10 900 10 250 250 0 250 

F11 6000 4700 75 3500 10 900 10 250 250 250 0 

 

Table 7. Frequency of travel of Cement Mixer Truck between facilities 

Facility i 
Facility j 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 

F1 0 10 10 10 10 10 10 10 10 10 10 

F2 10 0 10 10 10 10 10 10 10 10 10 

F3 10 10 0 0 10 10 0 3800 3800 3800 3800 

F4 10 10 0 0 10 10 10 10 10 10 10 

F5 10 10 10 10 0 10 10 10 10 10 10 

F6 10 10 10 10 10 0 10 10 10 10 10 

F7 10 10 0 10 10 10 0 10 10 10 10 

F8 10 10 3800 10 10 10 10 0 10 10 10 

F9 10 10 3800 10 10 10 10 10 0 10 10 

F10 10 10 3800 10 10 10 10 10 10 0 10 

F11 10 10 3800 10 10 10 10 10 10 10 0 

 

 



Table 8. Optimised locations of temporary facilities 
 Model 1 Model 2 Model 3 

Facility x y x y x y 

F1 28 6 37.5 6 48 62 

F2 20 6 20 6 73 80 

F3 4 22 4 22 3 100 

F4 82 10 82 11 53 4 

F5 90 18 90 19 103 40 

F6 12 14 12 14 83 50 

F7 98 26 98 27 5 82 

 

4 Conclusion 

Given the results presented in this paper, it can be 

concluded that the format in which the SLP model is 

formulated does have an effect on the overall 

optimisation results, both in terms of the optimum 

solution obtained and on the computational time 

required to achieve such a solution. Even though it may 

be desirable to model extra details in terms of the route 

path followed on a construction site, accurate 

representations will require greater computational times. 

At the same time, developing relaxation models seems a 

viable option particularly when quick results are needed, 

for a thorough sensitivity analysis to be conducted. 

Future work will involve the development of more 

representations that assess the impacts of model 

formulations on instance difficulty of the SLP problem. 
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