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Abstract

This paper is a follow-up to the last year’s ISARC
paper of mine and presents the process and the results of
verifying the previously described concept (of using GA
as optimisation method in parametric design of robots)
using the customised Fortran GA driver. The adaptive
search technique, known as the Genetic Algorithm (GA),
is a powerful optimisation tool, and has been
successfully applied to the preliminary and detailed
engineering design. Here, we describe the results of using
GA technique for optimising construction robot’s
kinematic parameters. The problem is investigated on an
example leading to the development of an automated
device to be used in restoration of steel bridges. This
process is selected for robotisation due to its high health
hazard™~when done conventionally, and because of its
environmental impact. The discussion on effectiveness of
the approach and GA performance conclude the paper.

1: Introduction

The initial step for any robot optimisation is to
analyse the nature of the engineering design process and as
a result, generate a geometrical description, known as
configuration [Bramlette and Cusic, 1990]. Preliminary
design results in the list of the selected parameters for
optimisation and the optimal values for the selected
parameters are to be determined.

One of the optimisation techniques is Genetic
Algorithm (GA) which translates an engineering problem
into a genetic one, where model characteristics are encoded
in the form of genes and transmitted from one generation
to the next. As the organisms evolve under the pressure of
fitness proportionate reproduction, successive generations
of the product or process under consideration are defined
by different combinations of the design parameters,
therefore producing results that tend to be increasingly fit
for their purpose. This method ensures to a very high
degree of probability, that the absolute optimum is found.
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Genetic Algorithm eliminates the inadequacies of purely
numerical optimisation methods and proves to be a highly
efficient one [Bullock et al, 1995].

2: Problem Statement

The paper addresses the parametric design problem
using a design concept typical for 6 DOF robots to be
employed for the task of paint removal off steel bridges.
The robot’s task is moving the blasting nozzle between
points along given trajectories (generated as a result of the
task analysis) at a constant distance from the surface.
Therefore, the geometry of the part of the underside of a
typical steel bridge (composite deck on primary and
secondary Universal Beams) is modelled (using the
computer graphic simulation package GRASP). This is
done in order to geometrically position boundaries of the
collision envelope (array of twenty comer locations
encapsulating the envelope) and points along the paths
required to be followed by the tool (four paths with three
points each), with relation to the origin, later taken as the
robot's base. Path points are allocated in such a way, as to
enable to attend to the whole of the surface within the
assumed, repetitive ‘unit’ workspace. Due to the
symmetry of the geometry of this ‘unit’ workspace and
the demanding computing capacity, the twelve points
chosen, cater for half of the model’s workspace. All points
are located in relation to the origin, which is placed below
the centre of the model workspace and is also taken as the
centre of the robot's base.

The following kinematic design parameters are
chosen for the optimisation: (i) the robot’s main
configuration (RRR with all three variables assumed as
the angle movement range of three revolute joints and the
spherical configuration - RRP, with two rotary motions
and the third variable prismatic axial motion), namely the
type and combination of the first 3 DOF, (ii) wrist
configuration - last 3 DOF (RPR - Euler (spherical) wrist,
performing in turn roll, pitch and roll motion and RPY
performing first roll motion, followed by pitch and then



yaw), (iii) optimal division of the unit length between two
links in the RRR configuration, as it is an additional
parameter for this configuration, compared to RRP, (iv)
the joint working ranges, (V) joints’ velocities and (vi)
joints” accelerations. The criteria for optimisation are
defined as: (i) collision avoidance, (i) percentage of
coverage, (iii) dexterity and (iv) productivity. From the
logical point of view, it is possible to optimise all the
parameters simultaneously as they are inter-dependent.
However, due to their varied level of importance, it is
preferable to group the criteria in two classes, as they
govern different sets of parameters, and therefore divide the
whole process into two stages.

2.1: First Stage Optimisation

In the first stage, the criteria of collision avoidance
(the most important one) and percentage of coverage are
addressed, and the optimisation of the robot aims at
determining the best major configuration, the relationship
between the link lengths in the RRR configuration and the
optimal values of movement sectors for all joints.

The criterion of the percentage of coverage indicates
the part of the work which will not be covered by the
robot and therefore, will need further manual completion.
The percentage of coverage is addressed through
minimising the distance between each of the six points
within the working environment (resulting from the task
analysis) and the set of six locations of the tool, calculated
with direct kinematic rules, using the parameters of the
representation. The best configuration for the task is
selected based on two separate computations carried out
for both configurations and preference is established, based
on the quantitative analysis of the objective functions
representing the quality of results.

The first stage representation is separately developed
for both configuration types and, as stated before,
comprises twelve sets (four paths of three points each) of
the first three joints' movement sectors and additionally
for RRR configuration, a share in the unit length of the
first link’s length. The number of parameters varies for
both configurations, because in RRP the third joint being
prismatic, provides the reach, while in RRR
configuration, all joints are angular and reach s
additionally addressed, as a unity divided between two
links.

Due to the different number of parameters, two
separate computations have to be carried out for both
configurations and a preference is established, based on the
qualitative analysis of representations with the highest
evaluation scores. This evaluation requires assessing the
collision avoidance against given boundaries of the
working environment (represented by externally input
array of corner locations) and the percentage of coverage.
To address the latter, the origin which is the robot’s base,
is placed centrally within the working space and 500 mm
below the underside of the secondary steel beams, to
imitate the robot’s position on the mobile trolley. In
order to clean within a typical bay, the nozzle has to run
underside of the beams, along the sides of the beams and
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underside the deck (twelve points in total). As the chojce
of configurations is between the revolute RRR and the
spherical one RRP, the validity of the outcome needs
careful consideration. Ambiguity arises at this point, dye
to the fact that the number of ‘independent’ parameters is
only four (joints’ angular movement sectors and link
length partition for RRR) and three (joints’ movement
sectors only), but the number of ‘computed’ parameters
reflects the number of points to be reached (twelve), as
well as the number of joints (three).

2.2: Second Stage Optimisation

The second stage involves optimising the parameters
based on dexterity and productivity criteria. Here, the
wrist type, the movement sectors of all six joints, and
their optimal accelerations and velocities are optimised. In
the second stage, the representation is using the already
preferred main configuration, but is extended by the choice
of the minor (wrist) configuration - responsible for the
orientation of the tool (the last 3 DOF) and is followed by
twelve sets (three points along four paths) of all six joints'
movement ranges, velocities and accelerations. This
allows us to evaluate the candidate solution with respect
to dexterity and productivity. Compatibility of the
dexterity between the candidate wrist embedded within the
representation and the required one (resulting from the
nature of the task and constraints of the environment), is
achieved by comparing the relevant parts of the orientation
matrices resulting also from direct kinematic calculations.
The highest productivity is awarded to the representation
requiring the shortest time for reaching and orienting the
wrist in all twelve positions along the trajectories. This
shortest time (smallest figure) is chosen out of the longest
times, calculated separately for all six motors, as this
simulates an assumed simultaneous movement,
characterised by velocity and acceleration.

The criterion of productivity is addressed deficiently
at this stage and offers only guidance to the overall task
completion time, as the dynamics of the robot are not
included in the analysis.

3: GA Approach

The Genetic Algorithm technique, as all evolutionary
techniques requires a model of the system under design,
so that relative fitness of designs based on different
parameter combinations (represented in special, coded
strings) can be determined. These strings also become
candidate solutions to the problem. The representation of
the design is a direct consequence of the choice of
parameters for optimisation, while the criteria serve to
evaluate the quality of the solution.

The basis of the success of the GA is the fact that the
'system' under design or optimisation is represented as 2
model consisting of all the parameters (currently
optimised). Then, the pool of such representations is
created (population) with the possible values of parameters
randomly varying, although within the parameters'
constraints. Each combination of the values of the



parameters is submitted for evaluation, assessed in turn,
and results in an allocated fitness value. Fitness or
evaluation calculations are carried out through an objective
function, embracing the criteria. The whole process
combines the following: (i) rejection of parameter
combinations, which produce low values and therefore,
unfit designs, (ii) preferential reproduction of the more
successful combinations and (iii) random generation of
new values for further testing. All these operations enable
the GA to sample varying areas of the design space whilst
concentrating on highly fit regions.

A detailed description of the structure and use of the
GA may be found in [Davies,1991].

For effectiveness, the parameters’ values are often
expressed in binary notation and are referred to as genes,
which are combined into chromosomes and comprise a
representation. If the representation is complex, it may
even consist of a string of chromosomes. To commence a
search of the design domain, an initial population of
designs is produced by random generation of the
population of chromosomes. Each member of the
population is then evaluated by reference to the objective
function. The next step involves the selection for fitness
proportionate reproduction. Some designs are passed from
one generation to another without modification, however
among the candidates for reproduction, new combinations
of parameters are created by use of crossover and mutation
operators [Goldberg, 1989]. Although Genetic Algorithms
using binary representation, single point crossover and
binary mutation are robust, they are almost never the best
algorithms to use blindly on any problem. Over the years,
experiments on the effectiveness resulted in a variety of
stochastic techniques for selection, the variations of the
genetic operators trying different population sizes,
development of the parameter sharing (niching) technique,
etc. These are, however, subject of further implementation,
as the one described here, is to prove suitability of the
tool and the approach.

3.1: Evaluation and Fitness

Fitness of any potential solution is captured in an
objective function which has the criteria, chosen in the
conceptual stages of problem development, embedded in
it. Dividing the optimisation process into two stages also
helps the fitness function clarification. The first two
criteria - collision avoidance and percentage of coverage are
included into a single formula:

gt
2dist+1
@

where, Y. dist is the sum of the distances between the
arrays of points representing tool and path locations
respectively. I is a penalty value added to each case of
collision. Tool locations are obtained through direct
kinematics calculations, using the parameters encoded in
the representation (here, choice of the configuration type,
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movement sectors of the first three joints and the optimal
division of the unit length between two links). Path
points are externally allocated and reflect the robot's
required tool's path (here - four paths of three points) with
relation to the base. Each tool location in each
representation is associated with consecutive points,
respectively, along all the paths, mimicking the real
movement of the tool and the sum of the distances is
calculated each time. Collision is checked simultaneously.
The sum of all these distances is added to the potential
collision penalty and then, the reciprocal is taken, in order
to favour the movement closest to the pre-allocated path,
through the largest fitness function for the most favourable
scenario.

The second two criteria - dexterity and productivity
are assessed using separate computation, consisting of two
independent formulas, which are then connected by being
multiplied by 'weighting' factors (A,B), based on the
relative importance of one criterion against the other.
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D is the tensor of the rotational part of the total
transformation matrix within the direct kinematics (for all
six DOF), R is the tensor of the needed (result of the tool
analysis, task requirements and workspace geometry)
dexterity. The denominator in the second component -
tm, stands for the sum of all the times needed to reach, in
turn, every point along all paths from previous stage.

3.2: Choice of Genetic Operators

The members of the population evolve through
generations, changing continuously using computing
models based on operations that mimic the adaptive
process of natural systems: selection for reproduction,
crossover and mutation.

The competition for producing the next generation is
achieved through binary tournament selection with a
shuffling technique for choosing random pairs for mating.
Pairs of individuals are chosen randomly from a
population and the better out of the two is selected with
fixed probability. In this implementation, each generation
has the same size as the original one and if the best
individual from the previous generation is not copied into
the new one, a random member is replaced by it.

The choice of genetic operators depends on the
encoding strategy. In the case of bit-string encoding,
crossover and mutation are the most obvious ones.
Traditional (single point) crossover is performed by
choosing at random a single position in both parents and
the parts after the crossover position are exchanged to form
two new offsprings. Although, one-point crossover is
inspired by biological processes, its algorithmic
counterpart has drawbacks, as it cannot combine and
protect certain combinations of features encoded in
chromosomes. Therefore, different numbers of crossover



points are experimented with, by GA practitioners. Hence,
in order to link certain combinations of preferred features, a
parameterised uniform crossover is introduced [Spears and
De Jong, 1991]. Two offsprings are produced out of two
parents with each bit position in both children being
randomly decided, which parent it originates from. An
exchange happens at each bit position when the
probability test is passed. The success of the specific
choice of the type of crossover depends, among other
factors, on such ones as fitness function and type of
encoding. Although, the software has an option for single
point crossover, the uniform one is recommended and all
the tests are carried out using the latter.

Although the crossover is considered the major
instrument of variation and innovation in GA, mutation's
importance as the tool against permanent fixation at any
particular locus is widely recognised. In a simple GA,
mutation is the occasional, with small probability,
random alteration of the value of the string position and in
binary coding it means changing a 1 to a 0 and vice versa
[Goldberg, 1989]. When used with other operators it
ensures that premature loss of vital information is avoided.

In this paper, a traditional jump mutation on a binary
string is implemented and aided with creep mutation or
real number creep [Davies,1991]. The idea behind the
creep operator is that a chromosome which is reproducing
is already in a fairly good position in relation to other
members of the population. What is needed, is just a
small browse around the current position to see if a
movement nearer the optimum can be detected. The creep
mutation moves along the chromosome, creeping up or
down each parameter by an increment, by which the
parameter array is increased. This is achieved by
converting the binary encoding into a real number,
creeping and converting back.

4: Fortran GA Driver Application

The paper uses an adapted version of a FORTRAN
genetic algorithm (GA) driver [Carroll, 1996].

The output of the first-stage run shows the average
value of each parameter in each generation, the average
fitness value, the best fitness of the generation, number of
crossovers, jump and creep mutations and number of
elitist reproductions. The average fitness per generation is
plotted against the generation number and the
optimisation for the first stage is initially carried out for
1000 and 4000 generations. It demonstrates standard
behaviour, schematically shown in Fig.1.

With the limits for some of the parameters (link
length and major joints' ranges) refined from the first
stage, the second stage representation is run also for 4000
generations and the relevant figures represent the variations
of the average fitness through the generations.

The algorithm also indicates when the convergence is
at the level of 20% and when there is no change in the
best member over 50 consecutive iterations. These figures
are purely empirical and act as the indication of potential
optimum, which in turn needs closer investigation of its
parameters.
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4.1: Genetic Parameters

Setting the values for genetic parameters, such as
population size, crossover and mutation probabilities has
to be made (similarly to the choice of genetic operators),
based on literature review and then trial and error, as these
parameters interact with each other non-linearly and
therefore, cannot be optimised one at a time.

Values of the critical variables are set up as follows:

(i) population size - 1000, as for large problems like
this, a hundred individuals (as recommended by
[Goldberg, et all 1992]) is not enough;

(ii) probability of jump and creep mutation are: 0.01
and 0.06 respectively, as this relationship generates (using
basic probabilistic arguments) approximately the same
number of creep and jump mutations per generation; and

(iii) probability of uniform crossover - is assumed as
0.9. This is quite a high rate, but it shows in practice not
only a rapid improvement in the fitness value, but also a
steady climb-up afterwards.

5: Results
Conclusions

of GA Performance and

There are several procedures (e.g. enumeration,
machine learning, or artificial intelligence), which would
lead to global optimum, but they require excessive
computing capacity and time to set them up. Effectiveness
of genetic algorithms can be assessed, however, at early
and intermediate stages, and in many various ways. As
suggested by [Holland,1975], when searching large finite
spaces, convergence is not the most useful performance
measure, as there is always a danger that the optimum is
not the global but the local one. To avoid the search
algorithm being entrapped in a local optimum, various
methods are available, such as (i) improvements to the
searching mechanisms, (ii) observing the speed with
which the optimum is arrived at, (iii) analysing the
efficiency of the fitness function with which it approaches
the optimum or (iv) the analysis of the quality of the
optimum solution at the intermediate stages.

Average Fitness

No. of Generations
Fig.1. Typical GA Evolution Curve
As the problem under investigation is a complex one

and involves searching large spaces, the approach of
monitoring the performance throughout and analysing the



current optima, is adopted. The typical form of the
evolution curve is shown in Fig.l from which it is
evident that the major improvements tend to occur during
the early stages of search. Progression beyond the turning
point on the curve, often requires the introduction of
increasingly sophisticated control parameters, for even
small gains. Finalising a large optimisation problem
requires significant computing capacity, while just
monitoring the development of the best individual
through generations can supply the indicative information
or even the required outcome at earlier stages.

Monitoring the output through the distribution of the
average fitness only, gives information about the speed
and convergence profile towards the optimal solution.
Assessment of the best individuals proves to be of the
greatest value. It is vital to notice that even tiny
improvement in the representation’s maximum fitness can
bring significant changes in the values of the parameters.
Also introducing standard deviation calculations gives
additional information about the quality of the solution.
When the improvement in fitness is accompanied by an
increase in standard deviation, calculated for the distances
between tool positions and a pre-determined path, a further
study may be needed to confirm the quality of the best
representation. However, first of all, careful analysis of the
well performing individuals in the population in both
computations (for RRR and RRP configuration) has to
determine the more suitable configuration for the task. The
calculations for both configurations relate numerically, as
the total link length in RRR and maximum value of the
reach parameter in RRP are both 1.0, revolute joints have
the same movement sector ranges and the workspace and
the position of the robot are also identical. Therefore, it is
rational to compare both performances also numerically.
Both programs are run for 500 generations, as the major
growth is inclined to occur during early stages. Initially,
the average fitness (and convergence performance) does not
dramatically improve in both configurations, however,
this is to be expected, as the number of parameters is quite
significant. Additionally, only the preferential performance
profile for two configurations is anticipated, so arriving at
the optimum is not the primary aim at this stage. Further
analysis indicates, through a numerical comparison of the
best fitness and convergence level in both configurations,
that the RRP is better performing and therefore, more
suitable for the task. Hence, the RRP is the one which is
admitted to the second stage which is run for another 500
generations. The number of generations is purely
empirical, it is noticed that the fitness is continuously
improving and with such a large problem rational decision
about how much computation effort to expend in trying to
improve the design and performance of a particular system,
can be made only on the economic and common sense
basis. The last representation giving the maximum fitness
is examined and the boundary values of all three
parameters are then outlined to show the movement
sectors for all three joints (to determine the percentage of
coverage). This information may additionally be used to
determine the choice of motors and for construction

purposes.
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The second stage representation uses the reduced
boundaries of the joints’ movement Sectors for the first 3
DOF (taken from the first stage) and is run also, for 500
generations, to show the behaviour of the average fitness
throughout the generations. It becomes evident that, as the
total fitness function consists of two independent criteria,
it would be beneficial to plot separately the average fitness
due to dexterity and productivity. Similarly to the first
stage, the performance of the best individual at the last
computation is closely investigated. Using the previously
mentioned formula for the population size [Goldberg, et
all 1992], the most efficient size for the second stage’s
problem is of approx. 4000 members in the population.
Due to the scale of this computation, a reduced size of
1000 is used, hence a poorer quality solution is obtained
at the 500th generation. It is, however, possible to detect
significance in the findings based on the results achieved
so far.

Analysis of the best individual allows us to draw
several conclusions. The superior configuration for the
task is clearly identified, as the spherical one and initial
verification using computer simulation and inverse
kinematics indicates, that it is clearly the better choice of
the two. Then, the ranges of the movement sectors of the
major configuration’s joints are identified. This
information not only helps to calculate the percentage of
manual involvement but can also assist in the kinematic
design and choice of actuators. The second stage is using
previously refined ranges of the parameters, for the second
set of criteria. Additional parameters involve the preferred
choice of the wrist configuration, which is the Euler wrist
(RPR), the movement sectors of the joints within wrist
which, in turn, can help the choice of the actuators and the
geometry of the end effector. The most economical values
for the velocities and accelerations reinforce the preference
for the joints’ actuators and help to calculate cost of
running the robot.

The scale of the computations, however, restricts the
simplicity and efficiency in obtaining final results at this
stage. Therefore, further study is carried out into the
micro-GA population and niching which significantly
reduces the population size together with the computing
requirements and therefore allows further exploration of the
peripheral regions of the search space.
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