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Abstract: This paper presents a topological model for reinforcing elements that can be
employed to generate equipment-level instructions for automated rebar cage fabricating
and placing machines. The model presented in this paper supports extraction of
information pertaining to hooks and splices in logarithmic running time during the
construction/manufacturing stage. In addition, this model allows constant order insertion
and deletion operation during the design and detailing stage. Hence, the described
topological structure can be adopted for development of efficient computer-aided-
design/computer-aided-construction (CAD/CAC) systems for RC structures. The
reinfocement detail consisting of longitudinal and stirrup/tie elements are stored using
Edge-Face based structures. Further, contact vertex tables are provided to maintain edge-
to-edge and edge-to-contact-vertex relationships that can be utilized for Computer-Aided
Process Planning (CAPP) in an automated environment.
1. INTRODUCTION

Reinforced Concrete (RC) framed structures are widely employed for construction

of general, commercial, and industrial buildings as well as civil infrastructure facilities

such as bridges. Even with such a wide application, issues related to geometric and

topological representation, that includes reinforcement detail, have not been investigated.

A unique, unambiguous, and complete geometric and topological representation scheme

for reinforcement detail will enable development of efficient computer-aided systems for:

(1) error-free rebar designing and detailing, (2) computer-aided construction process

planning (CAPP), and (3) computer-aided manufacturing (CAM) of rebar cages and pre-

cast concrete structural elements.

2. LITERATURE SURVEY
A description of various geometric and topological representation schemes and

their characteristics for rigid solids is provided in (Requicha 1980). Classical winged-

edge representation proposed by Baumgart (1974) represents a face as a sequence of

edges comprising it, while the edges are specified as ordered pairs of their constituent

vertices. A relational graph structure called face adjacency graph (FAG), represents

object faces as nodes, whereas, edges and vertices are encoded into links and hyperlinks

(Ansaldi et al. 1985). Another face-based model, called symmetric data structure, stores

face-to-edge and vertex-to-edge relationships along with their inverses (Woo 1985). For
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representation of structural objects of mixed dimension, Rossignac and O'Connor (1990)
have proposed a scheme based on Selective Geometric Complex (SGC). It consists of a
collection of mutually disjointed cells that are connected. Rossignac and Requicha
(1991) have extended the domain of Constructive Solid Geometry (CSG) into
Constructive Non-Regularized Geometry (CNRG) that support modeling of mixed-
dimensional objects. Weiler (1987) has proposed the so-called radial-edge structure for
structured object representation. A data structure for parametric representation within a
Non-Manifold Topological modeling system is described in Chen et. al. (1993).

Shapira (1993) has proposed a Spatial Occupancy Enumeration (SOE) technique,

using the octree structure to store information on building elements. Austin and Preston
(1992) have proposed a data structure to store information pertaining to an individual
R.C. beam component. Werner et al. (1993) have proposed a scheme similar to radial-

edge structure to store geometric and topological information in a R.C. structure.
3. COMPARISON OF THE PROPOSED MODEL WITH EXISTING MODELS

Although octree decomposition technique proposed by Shapira (1993) provide
easy access to any given point in an object, relationships between various parts of an
object are not stored explicitly. Further, boundaries of voxels must match and interior of

objects must be disjoint. In addition, modeling of elements with curved surfaces, such as
reinforcing bars, is difficult and requires large amount of storage space. Proposed data
structure by Austin and Preston (1992) employs a variant of the winged-edge data

structure called half-edge structure to represent the boundary of a R.C. beam component.

Reinforcing elements within a beam component, restricts each individual bar to lie in
either a vertical or horizontal plane parallel to the longitudinal axis of the beam

component. Modeling of reinforcing elements does not consider loop configurations and

hook formations for stirrups in a beam component. Further, topological relationships
between the longitudinal and stirrup/tie elements have not been incorporated. In addition,
the representation of slab and column components in a R.C. framed structure has not been
addressed. The proposed scheme by Werner et al. (1993) considers beam, slab, as well as
column components. However, issues related to computer-based storage and
manipulation of geometric and topological information have not been considered.
Further, information related to reinforcement detail has not been incorporated.

Designing, rebar detailing, and automated rebar cage manufacturing require
efficient topological operators to support activities such as: (1) insertion, deletion, and
altering the spacing of both longitudinal and stirrup/tie reinforcing elements and (2)
extraction of topological relationships for construction process planning and automated
pre-fabrication of reinforcement cages. The representation scheme presented in this paper
supports these activities by providing an efficient access to the geometric and topological
information pertaining to the reinforcing steel bars in a given structural component of a
R.C. framed structure. Loop configurations and hook formations for stirrup/tie
reinforcing bars have been considered while developing the model presented in this
paper. Example type definitions for data structures are provided using C-program syntax.
4. DESCRIPTION OF THE PROPOSED MODEL
4.1. Domain Specification
The representation scheme for reinforcement detail presented in this paper takes into
account the detailing specifications for: (1) longitudinal straight bars and (2) stirrup/tie
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bars stipulated in the American Concrete Institute Detailing Manual (ACI 1994).
However, the following situations have not been included within the domain specification
of this representation sheme: (1) bent (or cranked) longitudinal bars in beams, (2) spiral
ties for circular columns, and (3) orientation of ties for rectangular columns that results in

an interior angle other than 900, 1350, or 1800 at corner and/or hook locations.
4.2. Beam and Column Reinforcement Detail

Different configurations of longitudinal reinforcement, for various cross-sections
along the length of a beam or a column component, between any two given structural
joints i and j are possible due to: (I) variations in positive and negative bending moment
and (2) splicing of bars. Let us define the portion of a beam or column having the same
configuration of longitudinal reinforcement as a region. The geometric and topological
information regarding reinforcement detail in a given beam or column component is
stored in a structure called Beam_Column_Region. The information regarding: (1)
boundary and reinforcement detail of a beam or a column component and (2) connectivity
of the beam or column component to its adjoining structural joints is stored in a structure
called Beam-Column-Component. C-definitions of Beam-Column-Component and
Beam_Column_Region structures are provided below.

typedef struct beam_col_comp{
int id; /* identification

Str_Joint* i; /* adjoining structural joints

Str_Joint* j;

Face_Table* body; /* B-rep of beam/column*/
Beam_Column_Region* reinforcement; /* reinfocement detail */

} Beam_Column_Component;
typedef struct beam-col-region I

Beam_Column_Component* parent; /* parent pointer
Long_Circular_List* long_bars; /* longitudinal bars
Loop_List* stirrup_tie_bars; /* stirrup/tie bars

struct beam_col_region* sibling;
} Beam_Column_Region;

The Beam_Column_Component structure contains: (1) beam identification
number, (2) pointers to two adjacent structural joints, (3) a pointer to a Face-Table
structure that stores the boundary represenation (B-rep) of a beam/column component
itself, and (4) a pointer to a list of Beam_Column_Region structures. If the number of
regions in a given beam or column component is k>l, then the region adjacent to the
Str_Joint i in the Beam_Column_Component data structure is considered as the first

region and the one adjacent to Str_Joint j is considered as the kth region. Parent pointer
included in the Beam-Column-Region structure enables faster identification of relative
location of a region with respect to a complete R.C. framed structure.
Long_Circular_List and Loop_List store geometric and topological information
pertaining to, longitudinal reinforcement and stirrup/tie reinforcement, respectively.
Structure definitions for these supporting structures are provided in Appendix 1.

The shape of the boundary of each longitudinal or stirrup/tie reinforcing bar
matches to that of a solid cylindrical primitive shown in Figure Ia. A solid cylindrical
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primitive consists of: (1) 3 faces among which one is longitudinal and two are end faces,
(2) 3 edges out of which one is identified (edge a in Figure 1 a), and (3) two vertices that
bound the three edges. To capture topological relationships between a longitudinal bar
and a stirrup/tie bar, the longitudinal face of a longitudinal bar is partitioned into 8 equal
parts. This results in 8 boundary-edges along the longitudinal face, depicted by
numbered points along the boundary of an end-face, of a longitudinal bar as shown in
Figure lb. The following four cases, depicted in Figure lc, of topological relationships
between a longitudinal bar and a stirrup/tie bar are considered in the domain of this
topological representation scheme: (1) tangential contact between a longitudinal bar and a

stirrup/tie bar which results in one edge-to-edge contact vertex, (2) 900 bend of a
stirrup/tie bar at a corner or a hook location which results in three edge-to-edge contact

vertices, (3) 1350 bend of a stirrup/tie bar at a hook location which results in four edge-

to-edge contact vertices, and (4) 1800 bend of a stirrup/tie bar at a hook location which
results in five edge-to-edge contact vertices.
4.2.1. Longitudinal Reinforcement Detail

The geometric and topological information regarding an individual reinforcing bar
in a given region i is stored using an Edge-Face structure. A typical definition of an
Edge-Face structure for a longitudinal bar is provided below.

typedef

struct

struct e_f_long{
Beam_column_Region*
Bar-Type
int
double

double

Edge_Type*
e_f_long*

Splicing_Rebar*

parent;
bar-type; /* enumerated type
bar-number; /* between corner bars
long_face; /* face information */
end-face;
interior-edge; /* edge information
Boundary-Edge-Type[8] self-pointers;
/*to store edge-to-edge relationships */
spliced_bar;

/* spliced bar information */
} Edge_Face_Longitudinal;

The Edge_Face_Longitudinal structure contains a pointer to the parent region and
an enumerated type to uniquely identify individual longitudinal bar in a given region. Let
A, B, C, and D denote the four corner longitudinal bars in a given region i. Further, let
there be p bars between A and B, q bars between B and C, r bars between C and D, and s
bars between D and A. An enumerated type {A, B, C, D, AB, BC, CD, DA) along with
integer values (bar numbers) in the range of 1 to p, 1 to q, I to r, and 1 to s are utilized to
identify a particular longitudinal bar. Geometric information on individual longitudinal
bar in a given region is stored using two floating point numbers and a pointer to an
Edge_Type data structure. The Boundary_Edge_Type is an array of 8 elements
corresponding to each of the 8 boundary-edges, depicted in Figure lc, along the
longitudinal face of a longitudinal bar. This array stores self-pointers and facilitates
maintaining edge-to-edge topological relationships between a longitudinal bar and
stirrup/tie bars in a given region i. The exact methodology to store such relationships will
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be described in the next section that addresses the modeling scheme for the stirrup/tie
reinforcement detail. If there is a splicing of a longitudinal bar, the Splicing_Rebar
structure stores geometric and topological information pertaining to the lap-spliced bars.

The Edge_Face_Longitudinal structures of longitudinal bars in a given region i

are stored in a circular list called Long_Circular_List. A specification for: (1) ordering of

the Long_Circular_List and 8 boundary-edges of a longitudinal bar and (2) labeling of

longitudinal bars using the enumerated elements of Bar_Type is imperative to ensure an

unambiguous representation. Let us consider a counter-clockwise traversal of the list of

beam components enclosing a slab. During such a traversal, regions pertaining to beam

components that are adjacent to the bottom and right edges of the slab will have bar

labeled A located at the bottom-left corner and bars B, C, and D following in a counter-

clockwise direction. The Long_Circular_List in this case is also ordered counter-

clockwise. On the other hand, regions pertaining to beam components that are adjacent to

the top and left edges of the slab will have bar labeled A located at bottom-right corner

and the Long_Circular_List ordered clockwise. Similarly, ordering of 8 boundary-edges

along the longitudinal face of each longitudinal bar in a given region employs the

following scheme: (1) ordering for the longitudinal bars belonging to beam components

adjacent to bottom and right edges of the slab will begin at the boundaries that correspond

to the positive X and Y-coordinate axes, respectively, and proceeds in a counter-

clockwise direction and (2) ordering for the longitudinal bars belonging to beam

components adjacent to top and left edges of the slab will begin at the boundaries that

correspond to the negative X and Y-coordinate axes, respectively, and proceeds in a

clockwise direction.

4.2.2. Stirrup/Tie Reinforcement Detail
There can be more than one loop of stirrup/ties to resist the shear force at a given

cross-section of a beam or column component. Further, due to variations in the shear
force, the spacing of loops, and in some cases the configurations of the loops of
stirrups/tie bars themselves, may vary along the length of a given region. The Loop_List

in the Beam_Column_Region data structure allows variable spacing and configurations
for loops of stirrup/tie bars while maintaining the geometric and topological information
pertaining to stirrup/tie reinforcement detail. A typical C-definition for a Loop-List data
structure is provided in Appendix I. Edge_Face_Stirrup_Ties structure present in the
Loop_Configuration structure of a Loop_List stores information pertaining to a stirrup/tie
bar. A typical definition for Edge_Face_Stirrup_Ties structure is provided below.

typedef struct e_f_stirrup_tie f
double long_face_info; /* face information */

double end-face-info;

Edge_type* edge_info; l* identified edge

Hook_Location* hook-info; /* hook information

Stirrup_Tie_Hoop* hoop-type; /* for hoop type stirrups */

} Edge_Face_Stirrup_Ties;

The Edge_Face_Stirrup_Ties structure stores geometric information pertaining to
the vertices and faces using floating point numbers. The information regarding the
identified edge of a stirrup/tie reinforcing bar is stored using a pointer to an Edge-Type
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structure. The Hook_Location structure stores the edge-to-edge and edge-to-contact-
vertex topological relationships between a stirrup/tie bar and a longitudinal bar at the
location of a standard hook. A typical C-definition for the Hook_Location data structure
is provided in the Appendix I. It consists of two arrays, of 5 elements each, one for the

initial hook and the other for the terminal hook of a stirrup/tie bar. In case of a 900 hook,

last two elements of the array will contain NULL pointers and in case of a 1350 hook, last
element of the array contains a NULL pointer. Topological information pertaining to a
hoop type stirrup/tie bar is stored in the Stirrup_Tie_Hoop structure. A typical definition
of the Stirrup_Tie_Hoop data structure is provided below.

typedef struct stirrup-tie-hoop [
Topological_Relationships* Corner_Location[3]; corner - info;

/* corner information
Topological_List one-two; /* intermediate bars */
Topological-List two-three;
Topological-List three - four;
Topological-List four-one;

} Stirrup_Tie_Hoop;
The Corner_Location type in the Stirrup_Tie_Hoop data structure is an array of 3

elements that stores topological relationships occurring due to case(ii) of Figure le. The
variables one-two, two-three, three our, and four_one store topological relationships, of
case (i) of Figure 1c, that occur between a corner and a hook location or two corner
locations. Typical definitions for the secondary structures are provided in Appendix I.
4.2.3. Slab Reinforcement Detail

Reinforcement detail pertaining to a slab component, designed using one-way and
two-way slab theories, consists of longitudinal reinforcing bars to resist: (1) positive
bending moment, (2) negative bending moment, and (3) torsion at the four corners. The
reinforcement for positive bending moment and torsion are typically provided in two
layers of bars, namely, upper and lower, that are placed along the two principal
orthogonal directions x and y. There exists a boundary edge-to-edge contact between a
given longitudinal bar and every other longitudinal bars placed in the other (orthogonal)
direction. Negative bending moment reinforcement for a slab normally results in edge-
to-edge contacts with longitudinal bars near the top-faces of beams enclosing the slab.
The geometric and topological information pertaining to a reinforcing bar in a slab
component is stored in an Edge_Face_Slab structure.

typedef struct e_f_slab f
Bar_Type bar-type; /* enumerated type
Bar_Direction bar-direct; /* enumerated type
double long_face_info; /* face information
double end_face_info;
Edge_Type* interior_edge ; /* ed8e information

struct e_f_slab* Boundary_Edge_Type_Slab[2] self_pointer;
/* self pointers to to support edge-to-edge relationships

Slab_Topological_Relationships* slab_topo;
/* reinforcement topology

} Edge_Face_Slab;
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The Bar-Type in the Edge_Face_Slab structure is an enumerated type {UPPER,
LOWER, NEGATIVE} that enables identification of appropriate topological
relationships that need to be stored. The direction of a given longitudinal bar is stored
using the Bar_Direction enumerated type defined as {X-DIRECTION, Y-DIRECTION}.
The geometric information on faces and the interior edge is stored using floating point
numbers and a pointer to an Edge_Type structure . In case of topological relationships
between two reinforcing bars of a slab component , only two types of boundary edge-to-
edge relationships occur: (1) upper to lower bar contact that results in a relationship
between boundary edge-types 3 and 7 of Figure lb and (2) lower to upper bar contact
that results again in a relationship between boundary edge-types 3 and 7 shown in Figure
1 b. Hence, Boundary_Edge_Type_Slab in the Edge_Face_Slab data structure consists of
an array of only two elements that contain self-pointers . The topological information
regarding reinforcing elements is stored in a Slab_Topological_Relationships data
structure . A typical definition of Slab_Topological_Relationships structure is provided
below.

typedef struct slab-type I
Reinforcement_Type r_type; /* enumerated type

union {
struct pos_torsion {

Edge_Face_Slab** edge-to-edge;
Contact_Vertex_Table* slab-contact-vertex;

} Positive_BM_And_Torsional;
struct negative {

Edge-Face-Longitudinal edge-to-edge;
Contact-Vertex-Table * slab-beam-contact-vertex;

} Negative_BM;
} Reinforcement_Variant;

} Slab_Topological_Relationships;
The Reinforcement __Type in the Slab_Topological_Relationships structure is an

enumerated type {POSITIVE, TORSIONAL, NEGATIVE} provided to identify the

variant structures. The Edge_Face_Slab structures of longitudinal bars in a slab are

arranged as lists ordered in the two principal directions X and Y. Two such lists in

orthogonal directions, that are confined within the boundary of a slab component, give

rise to a rectangular grid structure . Thus, positive bending moment and torsional

reinforcement in a slab component results in a total of five grid structures . Negative

bending moment reinforcement for a slab component forms four lists, two X-lists and two

Y-lists, of Edge_Face_Slab structures. C type definitions for Slab-Grid _Reinf List,

Slab_Torsional_List, and Edge_Face_Slab_List are provided in Appendix I. A type

definition of the data structure for a slab component is provided below.
typedef struct slab {

Face_Table*

Slab_Grid_Reinf_List*
Slab_Torsional_List*
Edge_Face_S lab_List *

} Slab_Component;

body;

positive_BM;

torsion;
negative_BM;
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5. STORAGE AND TRAVERSAL PERFORMANCE
A review of the presented model indicates that geometric information, which

requires binary representation of floating point numbers, is stored only once. For
instance, geometric information pertaining to longitudinal and stirrup/tie reinforcing bars
is stored only once in the respective Edge-Face data structures. The topological
information is stored by employing pointers and structures of pointers to and from the
data structures containing the basic geometric information. Insertion or deletion of a
reinforcing bar requires creating and freeing of an edge-face structure and traversal of

Long_Circular_List and/or Loop_List. Since the size of these two lists are limited to the
number of bars within a given region, insertion or deletion of a reinforcing bar can be
performed in constant order time 0(1). Further, storing of structural joints by a sorted
order of their identification numbers will ensure determination of edge-to-edge and edge-
to-contact-vertex relationships among the reinforcing bars in O(log n) time complexity.

6. CONCLUSION
A novel approach to represent geometric and topological information pertaining to

reinforcement detail in a RC framed structural component is presented. The
representation scheme supports geometric queries related to: (1) spacing of longitudinal
elements in a given cross-section, (2) spacing of stirrups along a given beam section
between two structural joints, (3) extraction of topological relationships between
longitudinal and stirrup/tie elements, and (4) extraction of topological information
pertaining to torsional and bending moment reinforcement in a structural slab component.
Representation schemes that support such queries are imperative to develop efficient
automated systems for computer-aided rebar pre-fabrication and erection.
APPENDIX I -- Type Definitions for Supporting Data Structures

typedef struct e_f_splice {
Edge-Face - Longitudinal* splicing-bar;
Edge_Face_Longitudinal* contact_location;

} Splicing_Rebar;
typedef struct loop_config {

Edge_Face_Stirrup_Ties* loop;
Edge_Face_Stirrup_Ties* next;

} Loop_Configuration;
typedef struct loop-list I

Beam_Column_Region * parent-region;
Loops_Configuration * current;
Loops_Configuration* next;

} Loop_List;

typedef struct contact_vert {

Point_Type* contact_vertex;

struct contact_vert* next;
} Contact_Vertex_Table;

typedef struct topo_relation {
Edge_Face_Longitudinal * * edge_to_edge;
Contact Vertex Table* contact._vertex;

Topological_Relationships;
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typedef struct topo_list
Topological_Relationships* current;
Topological_Relationships* next;

} Topological_List;
typedef struct hook (

Topological _Relationships * hook_initial[5];
Topological _Relationships * hook_terminal[5];

} Hook-Location;
typedef struct e_f_slab_list

Edge_Face_Slab * reinforcement;
Edge _Face_Slab* next;

} Edge_Face_Slab_List;
typedef struct grid-list

Edge_Face_Slab_List upper;

Edge_Face_Slab_List lower;

} Slab_Grid_Reinf_List;
typedef struct tor_reinf (

Slab_Grid_Reinf_List* bottom-left;
Slab_Grid_Reinf_List* bottom-right;
Slab-Grid _Reinf_List* top-right;
Slab_Grid_Reinf_List* top_left;

} Slab_Torsional_List;
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