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Abstract— The integration of robots into the construction in-
dustry shows promise in addressing challenges such as stagnant
productivity and low efficiency. Recently, an increasing amount
of research develops construction robots based on reinforcement
learning (RL). However, most existing RL-based construction
robots are trained to conduct specific tasks individually without
cooperation. This paper proposes an approach that utilizes two
RL-based construction robots (an unmanned ground vehicle
and a robot arm) to collaboratively finish the task of window
panel transport and installation in sequence without human
intervention. Our experiment results show that the two con-
struction robots can successfully collaborate to finish all tasks
in an end-to-end manner after they are trained separately with
a success rate of 79.6%.

I. INTRODUCTION

The construction industry has reached an output of over
$10 trillion dollars worldwide by the end of 2020 and is
expected to continue flourishing [1]. However, the construc-
tion industry is prone to poor productivity and low efficiency
due to skilled labor shortages and labor-intensive tasks [2].
Moreover, the construction industry has been struggling to
provide workers with safe working conditions, as it has the
highest rate of fatal accidents accounting for nearly 20%
of occupational deaths in the U.S. [3]. The solution of
utilizing construction robots to tackle these challenges was
first proposed as early as the 1980s [4]. By having robots
conduct treacherous and arduous construction tasks, the
workers’ responsibility shifts from operation to supervision
[5], which also reduces the possibility of workers being
exposed to dangerous situations.

With the rapid development of reinforcement learning
(RL) for generating optimal control policies without hand-
crafted designs [6], RL-based construction robots have re-
cently drawn researchers’ attention [5]. Existing works focus
on training a single construction robot to conduct each task
individually, such as installing a ceiling panel [7], assembling
a lap joint [8], and placing a wood building block [9].
However, similar to multiple workers are responsible for
different tasks as a team on-site, construction robots should
also have the capability of working collaboratively. For
example, before having a robot arm install a window panel,
we could first have an unmanned ground vehicle (UGV)
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transport the window panel to a location within the robot
arm’s working reach.

As a first attempt to explore multiple construction robots
conducting tasks collaboratively, we propose an approach
that utilizes a UGV and a robot arm to conduct the task of
window panel transportation and installation in collaboration
after they are separately trained using RL. During the entire
inference process, the UGV and the robot arm deliver the
tasks in an end-to-end manner without any human interven-
tion such as handcrafted adjustment or manipulation.

II. RELATED WORK

We can roughly divide construction robots into pre-
programmed robots and RL-based robots according to how
the control policies are produced [5].

Pre-programmed construction robots conduct tasks fol-
lowing a pre-designed control policy. Specialists design the
control policy in detail outlining step-by-step instructions for
construction robots. Pre-programmed construction robots are
mature enough for practical deployment and have achieved
success on-site [10]. For example, [11] used pre-programmed
construction robots to bolt steel structures; [12] provided
trajectories for robot arms to assemble timber frames. How-
ever, the control policies of pre-programmed robots are
usually deterministic; hence only adaptable to specific work-
ing scenarios that were considered during policy design.
Consequently, pre-programmed robots cannot generalize to
dynamic environments, and tend to fail once the working
condition is changed.

To equip construction robots with adaptability and flexibil-
ity, researchers recently start to develop control policies using
RL methods [13]. RL-based construction robots actively
learn control policies by interacting with environments [14].
During repeated interactions, robots receive different rewards
while taking actions under various scenarios (e.g., positions,
poses, and surrounding elements). Their objective is to learn
control policies such that the they maximize the expected
total reward. For example, if picking up a window panel
will give a robot arm the maximum reward, a properly
trained RL-based robot arm should be able to complete
the task regardless of the location of the panel, as long as
the environment is capable of communicating the current
states and the rewards for a specific action. Researchers
have trained RL-based construction robots to conduct various
tasks. [7] trained a robot arm using an RL method that
imitated behaviors from video demonstrations [15] to install
ceiling panels. [8] trained a robot arm using a variant of
the Deep Deterministic Policy Gradient algorithm (DDPG)



[16] to assemble lap joints for timber frames in simulation
and then migrated the control policy to a real robot arm.
[9] trained a robot arm using Twin Delayed DDPG [17] to
place a building block for assembly. However, these RL-
based construction robots [7]–[9] were trained to conduct
tasks alone without collaborating or communicating with
other robots, which can be problematic when we incorporate
multiple robots to achieve a higher level of automation.

To enable construction robots to work collaboratively, we
propose a novel RL-based approach that allows a UGV and a
robot arm to conduct a sequence of tasks consisting of win-
dow panel transportation (by UGV) and installation (by robot
arm) in an end-to-end manner without external instructions.
Due to the extensive time and resource requirements when
training using real robots, we train our robots in simulation
following the norm of the existing RL-based construction
robots [7]–[9].

III. METHODOLOGY

Our approach trains a UGV agent for window panel
transportation and a robot arm agent for window installation
in two separate RL environments using the proximal policy
optimization (PPO) algorithm [18]. We then test these two
robots to conduct tasks sequentially in collaboration using
control policy inference in a joint environment that contains
both the UGV and the robot arm.

A. Building Virtual Environments

The first step is to build two different environments for the
UGV and the robot arm in Pybullet [19], which is a physics
simulation engine widely used in RL community. As shown
in Fig.1(a), the UGV’s environment contains a simplified
UGV, a blue transparent window panel on the UGV, and
a goal for UGV. The starting point of the UGV is randomly
and uniformly distributed in an area away from the goal
point, while the goal point is fixed. The observation space
has eight dimensions including the position, orientation, and
velocity of the UGV, and the position of the goal, all of
which are in the X-Y plane. The control policy generates
two-dimensional continuous actions to control the steering
angle of the front wheels and the driving speed of the four
wheels. The objective is for the UGV to navigate towards
the goal point such that the mass center of the window panel
is as close to the goal point’s coordinates as possible. For
the navigation task, we are only concerned about if it arrives
within the robot arm’s reach. Thus, we make the environment
setting and the reward function concise and straightforward.
The reward function for training the UGV agent is as follows:

RUGV
t =


2, reaching goal
∆d
C , ∆d > 0

0, otherwise,
(1)

where RUGV represents the immediate reward, ∆d repre-
sents the change of distances from the window panel to the
goal point between the current timestep and the previous
timestep, and C is a scaling factor. Essentially, in the
transportation process, a scaled positive reward would be

Fig. 1. Environments for training construction robots

returned only if the window panel was getting closer to the
goal; otherwise, no reward (zero) would be returned.

As shown in Fig.1(b), the robot arm’s environment con-
tains a robot arm, a window panel on the UGV, and a green
transparent cuboid marking the target where the window is
expected to be installed. We use the seven-axis KUKA LBR
iiwa robot as the robot arm due to its wide application for RL
tasks such as object pick and place and human-robot collab-
oration [20]. Following general poses on real robot arms, the
robot arm is initialized such that the rotations of the fourth
joint and the sixth joint are 1.57 radians and -1.57 radians,
respectively, and the rest of the joint rotations are all zeros.
To ensure the robot arm can conduct the tasks of pickup
and installation, the window panel and the target should be
both within the range of the robot arm. Considering that the
UGV trained in Fig.1(a) might reach the destination with
small offsets, we randomize the initial location of the window
panel so that the robot arm learns to pick up window panels
considering uncertainties of the initial location distributed
in an area. The observation space for the RL agent has 21
dimensions, including seven-dimensional joint rotations of
the robot arm, seven-dimensional position and orientation of
the window, and seven-dimensional position and orientation
of the target. The control policy generates seven-dimensional
continuous actions to control the rotation increments of the
seven joints. The objective of this task is for the robot arm to
first pick up the window panel and then move it towards the
target opening. We use the distance between the mass center
of the window panel and the target for measuring successful
installations. The reward function for training the robot arm
is as follows:

RArm
t =


1, pick
2, install
−1, collision
− 1

3000 , otherwise,

(2)

where Rarm represents the immediate reward. The reward
function is designed this way so that the cumulative reward in
each trial (a maximum of 3000 timesteps) is always bounded
between -2 and 3.

B. Training Construction Robots

After building the virtual environments, we train the UGV
for navigation and the robot arm for window panel pickup
and installation using policy gradient algorithms, which are



Algorithm 1 Vanilla Policy Gradient Algorithm
1: Initialize policy and value function parameters θ0, ϕ0.
2: for k = 0, 1, 2, ... do
3: Collect Dk = {τi} by running πk = π(θk).
4: Compute rewards-to-go R̂t.
5: Compute advantage estimates Ât based on Vϕk

.
6: Estimate policy gradient as

ĝk =
1

|Dk|
∑
τ∈Dk

T∑
t=0

∇θlog πθ(at|st)|θkÂt.

7: Compute policy update, θk+1 = θk + αkĝk.

θk+1 = θk + αkĝk.

8: Fit value function:

ϕk+1 = argmin
ϕ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

(Vϕ(st)− R̂t)
2.

9: end for

suitable for continuous control of RL agents deployed on
robots [14]. Policy gradient methods use parameterized func-
tions such as neural networks to model control policies π.
The policy functions are optimized using gradient ascent so
as to generate actions (a) that maximize cumulative rewards
for agents.

Algorithm 1 shows the process of how a general policy
gradient algorithm works in detail. First, we collect a set
of trajectories Dk by having the agent interact with the
environment using the current control policy πk. For each
trajectory, we compute the rewards-to-go. We then compute
the advantage estimations based on the current value function
Vϕk

. After calculating the policy gradients based on the ob-
jective function, we update the control policy using gradient
ascent methods such as Adam [21]. Lastly, we fit the value
function by regression on mean-squared error via gradient
descent. This process is repeated until convergence.

The vanilla policy gradient algorithm’s performance is
susceptible to collapse since it does not constrain how much
the new control policy deviates from the previous policy.
To avoid this limitation, we specifically adopt PPO-Clip
[18], which constrains the gradients. Meanwhile, compared
to other policy gradient algorithms that tackle the gradient
issue such as trust region policy optimization (TRPO) [22],
PPO is more widely used for its easier implementation and
tuning. PPO is similar to the vanilla policy gradient algorithm
except for the objective function. PPO’s objective function
[18] is as follows:

L = min

(
πθ(a|s)
πθk(a|s)

Aπθk (s, a), g(ϵ, Aπθk (s, a))

)
, (3)

where

g(ϵ, A) =

{
(1 + ϵ)A A ≥ 0

(1− ϵ)A A < 0
.

Instead of using KL-divergence or other constraint terms,

Fig. 2. The environment for testing robot collaboration

PPO-Clip achieves the constraint by clipping in the objective
function.

C. Collaborating Using Inference

After training the UGV and the robot arm in their re-
spective environments using PPO-Clip, we build a third
environment (the collaboration environment, as shown in
Fig.2) for robot collaboration as testing. The collaboration
environment accommodates the trained UGV and robot arm,
the window panel, and the non collidable marker used as
the robot arm’s target. Without any human intervention,
a successful collaboration between the two robots would
require that the UGV has to navigate to the area around the
goal point first; only then will the robot arm start operating
for window panel pickup and installation.

IV. EXPERIMENTS AND RESULTS

To validate our approach, we tested the trained UGV and
the robot arm in the collaboration environment by inference
from their learned control policies. In the experiment, we
randomized the starting point of the UGV in the yellow area
as shown in Fig.2. We conducted experiments repeatedly for
10 times, each of which we ran 100 trials and counted the
number of successful attempts to arrive, pick, and install.

TABLE I presents the experiment result. Out of 1000 trials,
the success rate of the UGV arriving in the designated area
is 97.5%; the success rate of the robot arm picking up the
window panel is 94.8%, and the success rate of the robot arm
installing the window panel is 79.6%. Given that the UGV
has arrived in the area, the success rate of the robot arm
picking up the window panel is 97.2%; and the success rate
of the robot arm installing the window panel is 81.6%. Given
that the UGV has arrived, and the robot arm has picked up
the window panel, the success rate of the robot arm installing
the window panel is 84.0%.



TABLE I
NUMBERS OF SUCCESSFUL ARRIVALS, PICKUPS, AND INSTALLATIONS.

Group Index Trial Arrive Pick Install
1 100 98 93 78
2 100 97 95 79
3 100 98 95 79
4 100 96 92 80
5 100 97 95 82
6 100 97 94 75
7 100 100 97 79
8 100 98 96 85
9 100 97 95 80

10 100 97 96 79
Total 1000 975 948 796

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we proposed an approach aiming to have
a UGV and a robot arm conduct a sequence of tasks (i.e.,
window transportation and installation) in collaboration after
training two RL agents separately in two different environ-
ment settings. Results showed that the trained robots could
successfully finish the sequence of tasks with considerable
success rates. In the construction industry, most tasks are
carried out in sequence and are usually connected to each
other. Studying how construction robots can partition the
tasks and work collaboratively is crucial to achieving a higher
level of automation in construction. Our approach makes a
first attempt to have multiple robots trained using RL to carry
out construction tasks in collaboration. For future work, we
will explore simultaneously training multiple construction
robots for working in collaboration and migrate the control
policies to real construction robots.
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