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ABSTRACT: This  paper  presents  a  new  path  planning  approach  using 
Coevolutionary genetic  algorithm (CGA) for  automating  the  path planning of two 
Cooperative  construction  manipulators.  A  methodology  based  on  the  concept  of 
configuration  space  (C-space)  technique  in  conjunction  with  the  Coevolutionary 
genetic  search  is  used  for  generating  the  path.  The  paper  proposes  a  method  for 
finding  the  minimum  distance  and  collision  free  path  using  CGA.  It  uses  an 
interference detection algorithm that  runs  in parallel  with CGA to check collision 
between obstacle and cooperative cranes during path planning. The effectiveness of 
CGA is compared with other search approaches like A* and Genetic Algorithms GA. 
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1. INTRODUCTION

Cooperative  manipulators  are  being  widely 
employed  in  construction  and  assembly  for 
handling  medium  to  heavy  objects.  Path 
planning  of  cooperative  manipulators  is  quite 
different  from  path  planning  of  a  single 
manipulator. When the object to be lifted is too 
heavy or large for a single manipulator, options 
such as specially assembled equipment such as 
jacking systems and cooperative use of multiple 
medium capacity manipulators can be a suitable 
alternative. 

Path planning techniques are classified based on 
the criteria such as dimension of space, mobility 
of manipulator and obstacles,  representation of 
space and nature of information gathering [1-6]. 
Trajectory  planning  of  two  manipulators, 
cooperating to manipulate the same object, was 
solved  using  genetic  algorithm  (GA)  [7]. 
Evolutionary  algorithm  has  been  used  to  find 
time-optimal  trajectories  of  two  coordinating 
manipulators sharing the same work space [8]. 

Customized genetic operators such as analogous 
crossover,  which  suits  certain  problem 
situations, was also designed [9]. Recent efforts 
include the development of natural systems that 
can capture  key features  such  as  Co-evolution 
and  Life  Time  Fitness  Evaluation,  for  solving 
path-planning issues [10].

Earlier  attempts  for  path planning include Hill 
climbing  search,  A*  search  and  Genetic 
Algorithm  (GA)  search  [11,  12].  These 
approaches  have  certain  disadvantages  like 
excessive  computational  time,  memory 
requirement  and  non-optimal  paths.  Recent 
works  utilize  the  concepts  of  co-evolutionary 
genetic  algorithm  (CGA).  Two  populations 
constantly  interact  and  co  evolve  in  case  of 
CGA.

A 2-D path-planning problem using CGA was 
attempted  [10].  This  paper  presents  a  new 
approach  to  solve  the  3-D  path-planning 
problem  of  cooperative  manipulators  using 
CGA. 



2. PROBLEM STATEMENT

This  section  presents  the  details  of  a  path-
planning  problem  involving  two  spatial 
cooperative manipulators,  each of 3 DOF with 
hinged  base.  Two  important  considerations  of 
cooperative manipulators path planning are:

(a)   Ensuring cooperation between the  two 
manipulators during lifting.

 (b) Handling the computational complexity  
of the problem based on the DOF of the 
cooperative manipulator system and its 
movement  in  obstacle  clustered  
environment.

a) Ensuring     cooperation     between    the  
two     manipulators during lifting

Cooperation  between  the  two  manipulators  is 
ensured  by  (i)  Nature  of  movement  of 
cooperative  manipulators.  (ii)  Spatial  distance 
between  the  hook  ends  of  the  manipulators 
during cooperative lift.  (iii)  Altitude difference 
between the hook ends of the manipulators and 
(iv) Hoist limit evaluation for both manipulators. 

Nature  of  movement  represents  the  movement 
between  the  two  arms,  which  can  be  either 
synchronous  or  asynchronous.  A  synchronous 
movement  refers to the identical  movement  of 
different  joints  of  cooperative  cranes  between 
two steps.  In case of asynchronous movement, 
the movement between the two successive steps 
will not be the same. 

The spatial  distance between the boom tips of 
the manipulators is kept within object length ± 2 
units.  When  the  spatial  distance  between  the 
boom tips of both manipulators is different from 
the object length, the sloping of load line occurs. 
This can be computed by (Figure 1).    

                (1)

          
where ‘HL’ - hoisting length of the hook and ‘D’ 
-  Off-lead  i.e.  displacement  of  the  hook  from 
boom tip. Let ‘W’ be the vertical component of 
the  load  transferred  from  the  object  to  the 

manipulator  and  ‘Wa’  the  actual  load  acting 
along  the  load  line  of  the  crane.  ‘Wa’  is 
calculated by

              Wa  = W / Cos β                         (2)       
   
 (W – Wa) is the additional load transferred to 
the crane due to the slope ‘β’ of the load line. 
This results in additional load transformation to 
the manipulators.

If the altitude difference (H1-H2), as shown in 
figure 2, exists, different loads will be acting on 
the  hook  ends.  This  results  in  more  payload 
acting on a particular  manipulator.  In  order to 
limit  the  extra  load  on  the  crane,  an  altitude 
difference of ‘3’ units is considered.
  
Hoist limit evaluation represents the safety to be 
considered  in  hoisting  the  rope  in  either 
direction i.e. up or down from the ground level. 
Minimum limit  is considered as ‘0’ unit i.e. at 
ground level and maximum position is boom tip 
position, considered above ground level, which 
keeps on varying depending on the luffing angle.

b)  Handling the computational  complexity  of  
the  problem  based  on  the  DOF  of  the 
cooperative    manipulator  system  and  its  
movement in obstacle clustered environment

Collision of the cooperative manipulator system 
in the obstacle-clustered environment can occur 
due to (i) manipulator-1 colliding with obstacles, 
(ii) manipulator-2 colliding with obstacles, (iii) 
object  colliding  with  obstacles  and  (iv) 
manipulator-1 colliding with manipulator-2.

The feasible  movement  of  the  manipulators  in 
the obstacle-clustered environment is ensured by 
means  of  interference  detection  algorithm that 
assesses  the  different  configurations  of  the 
manipulator for collision. The collision checking 
is  done  by  means  of  interference  checking 
algorithm  that  performs  interference  check 
between  line  and  plane  segments.  For  this 
purpose,  the  obstacle  is  represented  by  many 
plane  segments  and  cooperative  manipulator 
system is represented by many line segments.

β = tan-1      D
                   HL



A test problem considers two spatial cooperative 
manipulators  performing  asynchronous 
movement.  Both  manipulators  are  identical  in 
size and shape. Table 1 shows the configuration 
of different  arms.  The upper and lower  bound 
movement for different arms are shown in Table 
2. 

3. SEARCH METHODOLOGY

This section covers the details of modeling and 
implementation for 2x3 cooperative manipulator 
system using A*, GA and CGA.

3.1 A* search in open C-space

A* search is a free search in the open C-space 
with  on-line  feasibility  check  [12].  The  main 
advantage of this search is that it has the ability 
to go back to any node which was visited earlier. 
The  step  size  values  of  swinging,  luffing  and 
hoisting for generating neighbors are 5, 5 and 1.

3.2 GA search in open C-space

GA search is a free search in the open C-space 
with  on-line  feasibility  check  [11].  The 
population consists of 250 strings. Each string in 
GA  represents  movements  of  the  manipulator 
from pick to place location. A typical string with 
fifteen intermediate configurations between pick 
and place location is shown in figure 3. 

3.3 CGA

In  this  approach,  two  populations  known  as 
solution  population  and  test  population 
continuously  interact  with  each  other  to 
evolve an optimal solution. 

a) Solution population: Path representation as  
a string

The solution population consists of 200 strings. 
Each  string  represents  the  movement  of 
manipulator from pick to place location (Figure 
3). The number of steps between pick and place 
location is taken as fifteen.

b) Test Population

The  test  population  consists  of  test  conditions 
known  a  priori  (Figure  1  and  Figure  2).  It 
consists of (1) spatial distance between the hook 
ends of the manipulators i.e.  object length  ± 2 
i.e.  15+2  and  15-2,  (2)  altitude  difference 
between the  hook ends of  the  manipulator  i.e. 
(H1-H2)  = ‘3’  units,  (3)  hoist  limit  evaluation 
varies according to boom luffing angle and (4) 
collision of the cooperative manipulator system 
with  the  environment  that  consists  of   (i) 
manipulator-1  colliding  with  obstacles,  (ii) 
manipulator-2  colliding  with  obstacles,  (iii) 
object  colliding  with  obstacles  and  (iv) 
manipulator-1 colliding with manipulator-2.

c) Encountering

In  CGA encountering  is  the  process  in  which 
one  string  from  solution  population  and 
randomly  chosen  test  conditions  from  test 
population interact with each other to produce a 
better offspring. It consists of three stages. 

STAGE 1

Fitness is found for all  the individuals in both 
the populations by subjecting them to encounter 
‘3’ randomly selected individuals from the other 
population. A solution receives a payoff of one 
if  it  satisfies  the  test.  Otherwise,  it  receives  a 
zero.  The  opposite  is  true  for  test.  It  gets  a 
payoff  of  one if  the solution encountered does 
not  satisfy  a  test.  Each  individual  -  test  or 
solution - has a history, which stores the payoff 
resulting from such an encounter.  The fitness of 
an individual in solution population is estimated 
by 

Fs = P (x) [1+(1/Hs)] (3)

where P (x) is the objective function and Hs is 
the total payoff for that individual. The objective 
function  is  defined  as  the  sum  of  square  of 
absolute  differences  of  identical  joint  angles 
between  successive  configurations  for  all  the 
joints  of  the  manipulators  as  the  cooperative 
manipulator  system moves  from pick  to  place 
location. It is estimated by

 



n-1      m
P(x) = Σ       Σ   | θ i+1, j - θ i, j | 2 (4)

i=1    j=1
                   
where  ‘n’  represents  the  number  of 
configuration sets and ‘m’ represents the number 
of joint parameters required to define a unique 
position of the cooperative manipulator system 
and ‘θ i, j’ is the value of joint angle of jth link in 
ith  configuration set. The fitness of an individual 
in the test population is estimated by 

F = Ht. (5)

where Ht  is the total payoff for that individual. 
An individual according to their fitness value i.e. 
minimum  distance  and  payoff  for  first 
population  and  only  payoff  for  second 
population,  is  arranged in  descending  order  in 
their respective population

STAGE 2

In  this  stage,  one  fittest  string  from  the  first 
population  and  three  randomly  selected  test 
conditions from the test population are subjected 
to encounter. The selection of this string and test 
conditions  are  biased  towards  highly  ranked 
individuals  i.e.  the  fittest  individuals  are  more 
likely  to  be  selected.  The  result  of  such  an 
encounter is ‘1’ if any test is satisfied (or) ‘0’ in 
case of violation. The fitness (or) maximum pay-
off for this string is calculated. According to its 
fitness value, it is ranked in descending order in 
the  first  population.  A  similar  operation  is 
performed  on  the  test  population  also.  Since 
both the  populations  are  sorted based on  their 
fitness values, an individual might move up and 
down in its population as a result of the update 
of its fitness. 

STAGE 3

In  this  stage,  the  conventional  GA  process  is 
followed. Two strings from the first population 
are selected based on their fitness. An offspring 
is created by the process of adaptive crossover. 
Adaptive crossover is illustrated in figure 4, i.e. 
the  same  intermediate  configurations  on  both 
parent 1 and parent 2 will be checked for their 

payoff value. The particular configurations, with 
highest  payoff,  will  be inserted in to the same 
configuration  in  the  offspring.  This  cycle  is 
repeated for the remaining configurations  until 
all the configurations in the offspring are filled. 

Mutation is applied in an adaptive manner with a 
probability  of  ‘0.1’.  Adaptive  mutation  is 
implemented  in  order  to  reduce  the  angular 
displacement between adjacent configurations as 
well  as  to  bring  the  cooperation  between 
manipulator 1 and manipulator 2. All  the joint 
angle positions are subjected to this probability. 
If they are satisfied, they will undergo adaptive 
mutation as shown in Figure 5. For example, the 
swing position as marked by arrow ‘1” is to be 
subjected to adaptive  mutation (assumed to be 
the jth position) then the j-6th (arrow 2) and j+3rd 

position (arrow 3), both are swing positions, will 
be  considered.  A  random  number  will  be 
generated  between  the  swing  positions 
considered.  Similarly  if  luffing  position  is 
considered as jth position, then the j-6th and j+3rd 

positions i.e. luff position, will be considered for 
mutation.  A random number  will  be generated 
between  these  points.  The  value  generated  is 
inserted in the jth position. This process is applied 
to all the joint angle positions, which satisfy the 
mutation probability condition.  

Figure  6  shows  the  methodology  adopted  for 
finding a feasible collision free string with CGA. 
The fitness of offspring is estimated as the sum 
of  payoff  received  from encounter  with  three-
selected  test  conditions.  The  offspring  is  then 
inserted  into  the  solution  population  based  on 
their  fitness values.  To accommodate  this  new 
offspring,  the  lower  fitness  value string in  the 
solution  population  is  deleted.  The  procedure 
adopted in STAGE 2 and STAGE 3 is continued 
until  the  fitness  of  string  in  the  solution 
population  remains  almost  the  same  in  ten 
consecutive generations. 

4. RESULTS AND DISCUSSIONS

The  manipulators  shown  in  the  section  2  are 
considered  for  cooperative  path  planning  with 
the proposed CGA approach.  In order to asses 
the effectiveness of this approach, two different 
approaches  such  as  A*  and  GA  for  path 



planning  were  also  considered  and  these 
approaches  were  developed  using  C++ 
programming language and implemented on the 
same  platform,  i.e.  333  MHz  Pentium  II 
processor PC with 128 MB RAM with Windows 
NT operating system. The computation time for 
finding  the  feasible  path  from  pick  to  place 
location using different approaches like A*, GA 
and CGA, depends on the lift path and position 
of  the  pick  and  place  location  in  the  obstacle 
clustered  environment  i.e.  lifting  an  object 
vertically  up  may be  simpler  to  compute  than 
another path.  For path planning of cooperative 
manipulators, C-space approach was adopted for 
representing  the  position  of  the  manipulators. 
Performance  of  A*,  GA  and  CGA  for  path 
planning  of  2x3  cooperative  manipulators  is 
assessed and the results are presented in Table 3.

4.1. A*search

The  minimum  incremental  movements  of 
different  joints  of  manipulator  are  shown  in 
Table 4. A* search could determine the feasible 
path  from  pick  to  place  location  in  30 
intermediate  steps.  The  time  taken  for  finding 
the feasible path is 320 minutes. The minimum 
distance,  in  terms  of  linear  movements,  from 
pick  to  place  location  is  73  units.  If  A*  is 
allowed to search the C-space exhaustively i.e. 
with 1 degree increment, the time taken will be 
more than 2000 minutes. The disadvantage with 
this step angle increment is that pick and place 
angle  has  to  lie  within the  increment  angle  of 
search;  otherwise  the  search will  never  give a 
feasible solution. 

4.2. GA search 

Total  number  of  joint  angles  to  represent  a 
unique  configuration  is  6;  Range  for  different 
joint angles  swing: 0-360 degrees: luffing: 30-
80  degrees:  hoist:  0-39  units;  Number  of 
configuration  sets  representing  a  string 
excluding pick and place location: 15.

For generating the path with GA, the number of 
intermediate  configurations  between  pick  and 
place location is  fixed as fifteen. The time for 
computation  of  feasible  path  with  GA  is  183 
minutes.  The  minimum  distance  in  terms  of 

linear movements from pick to place location is 
79 units. GA computes the collision for all the 
configurations in the population, due to which a 
considerable time was spent. 

4.3. CGA search

Total  number  of  joint  angles  to  represent  a 
unique configuration: 6; the arm configurations 
and its lower and upper bound values are shown 
in Table 3 and Table 4. Number of configuration 
sets  representing  a  string  excluding  pick  and 
place location: 15.

The computation time for finding a feasible path 
is 20 minutes. The minimum distance, in terms 
of linear movements, from pick to place location 
is 58 units.  CGA subjects only two strings i.e. 
one fittest string and one offspring for collision 
computation  in  the  successive    generations 
except the initial fitness ranking generation, thus 
saving a large amount of time. 

The pictorial view showing the object position at 
intermediate locations for A*, GA and CGA are 
shown in figure 7, figure 8 and figure 9. These 
discrete  object  positions  are  drawn  by 
converting the intermediate configuration angles 
of  the  cooperative  manipulator  system  in  C-
space to the Cartesian Space.
 
From the figure 7, it is observed that the discrete 
object positions are placed in a zigzag position 
in  A*.  This  is  due  to  the  move  taken  by  the 
search for adjacent feasible configuration when 
it encounters one. In the Figure 8,  it is observed 
that discrete object positions computed with GA 
are  not  located  at  equal  intervals.  Since  the 
entire  population  undergoes  cross  over  and 
mutation at the same time,  the possibility of  a 
larger random joint  angle movement  exists.  In 
the Figure 9, it is observed that discrete object 
positions  computed  with  CGA  are  almost 
located at equal intervals.  Two populations i.e. 
highly biased individuals from string population 
undergo  adaptive  cross  over  and  parameter 
based mutation, which results in the possibility 
of  smooth  movement  of  joints  with  equal 
interval of displacement. 



5. CONCLUSIONS

This paper presents a new approach using CGA 
for automated path planning of 2x3 cooperative 
manipulator system. The suitability of CGA for 
offline path planning in comparison with other 
techniques was demonstrated.  From the results 
presented  in  this  paper,  the  following 
conclusions can be made:

1. CGA  in  conjunction  with  C-space 
technique  proves  to  be  an  effective 
approach  to  solve  path  planning 
problems  of  cooperative  construction 
manipulators in complex environment

2. Search  using  CGA  is  found  to  be 
effective  approach  in  terms  of 
computation  time,  when  compared  to 
other  search techniques like A* search 
and GA search. 

3. CGA  was  found  to  be  efficient  in 
generating the shortest path from pick to 
place location, when compared to other 
search techniques like A* and GA. 

The  future  work  attempts  to  investigate  the 
suitability  of  this  approach  for  more  complex 
cooperative  manipulator  applications  like  2x4 
i.e. two manipulators each with 4 DOF.
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Table 1. Manipulator arm configurations

Arm 

configurations

Length Breadth Height

Base 10 8 2.5

Boom 40 3 3

Hoisting Rope 39 unit - -

Table 2. Upper and lower bounds for the 
 manipulator arms

Arm Base Boom Hoisting 

Rope

Figure 1 Increase in Load Transferred to the manipulators due to slope of the load line

Figure 2 Difference in load shared by hook ends of the manipulators



Lower 00 300 0 unit
Upper 3600 800 39 unit

      Configuration of                                                                             Configuration of
       Robot 1           Robot 2                              Robot 1        Robot 2 

θ1 θ2 θ3 θ4 θ5 θ6 1 2 3 . . . . 13 14 15 θ1 θ2 θ3 θ4 θ5 θ6

               

        (Pick location)                     (Intermediate location)        (Place location)

θ1 θ2 θ3 θ4 θ5 θ6

Figure 3.A typical string with fifteen intermediate configurations of 2x3 cooperative manipulators 

between pick and place location

Pick 1 2 3 . . . . 13 14 15 Place

Pick 1 2 3 . . 13 14 15 Place

Pick 1 2 3 . . . . 13 14 15 Place

Figure 4. Adaptive cross over

320 70 2 320 70 2 260 60 3 300 50 5 290 56 6 280 60 3 . .
2   1      3

Insertion point

Figure 5. Adaptive mutation

Parent string 2

Offspring

Random number generation between 320 and 300

Adaptive cross over

Parent string 1

Place
Pick 1 2





Figure 6: CGA methodology for finding feasible collision-free string

Table 3. Performance comparison of A*, GA and CGA for 2x3 cooperative manipulator path planning
 

   Method Earlier approach [11,12] Current approach

A*  GA CGA

Pick location     [320,70,2][320,70,2]  [320,70,2][320,70,2]        [320,70,2][320,70,2]

Place location [270,40,2][270,40,2]  [270,40,2][270,40,2]        [270,40,2][270,40,2]

Number of generation      -             540 750

CPU time (minutes) 320             183 20 

Distance in terms of linear 
movements (units) 73                    79                                58 

Table  4.  Incremental  angle  between  adjacent 
moves of manipulator

Arm Base Boom Hoisting 

Rope
Lower 00 300 0 unit
Upper 3600 800 39 unit
Increment 50 50 1 unit

Figure 7. Pictorial  view   showing   the   path 
generated by A* for cooperative manipulators

Figure 8. Pictorial   view   showing  the    path 
generated by GA for cooperative manipulators



Figure 9. Pictorial   view    showing    the    path 
generated by CGA for cooperative manipulator
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