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Abstract –  

Recognizing construction assets from as-is point 
cloud data of construction environment provides 
essential information for engineering and 
management applications including progress 
monitoring, safety management, supply-chain 
management, and quality control. This study 
proposes a fast and automated processing pipeline for 
construction target assets recognition from scattered 
as-is point clouds. The recognition tasks can be 
subdivided into object detection, which involves 
computing the bounding box around each 
construction equipment, and object classification, 
which involves labelling point cloud clusters from 
discrete equipment categories, such as backhoe loader, 
bulldozer, dump truck, excavator and front loader. 
The object detection step consists of point cloud 
down-sampling, segmentation and clustering. For the 
object classification step, machine learning methods 
were employed to determine class membership 
probability using features derived from the ESF 
(Ensemble of Shape Functions) descriptor. The 
classifiers were trained on synthetic point clouds 
generated from CAD (Computer-aided Design) 
models. The method was validated using laser 
scanned point clouds from an equipment yard. The 
test results demonstrate promising advancements 
towards semantic labelling and scene understanding 
of point cloud data. 
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1 Introduction 

In the past decades, construction practices and 
research have been actively embracing emerging 
technologies to improve project performance in 
productivity, quality and safety. The technical categories 

that have been extensively studied and tested in the 
construction industry include data sensing, simulation, 
information modeling, and visualization.  From these 
categories, as-built data sensing and visualization are 
considered by many industry practitioners and academia 
experts as one of the most promising technologies that 
will greatly expand the utilization of site information 
[1][2]. For instance, 3D point clouds produced by laser 
scanners and other data acquisition technologies have 
been widely used for acquiring and generating as-built 
site information to support applications such as 
construction quality assessment and control [3][4], 
construction progress tracking [5][6], building energy 
analysis [7], construction hazard recognition [8], 
structural health monitoring [9] [10] and highway asset 
management [11] [12]. Each application has a different 
focus of target objects (e.g., building components, 
materials, equipment, workers, and traffic signs) on the 
as-built point clouds.  

Regardless of the applications, recognizing objects 
from point clouds is often the very first step for post data 
processing and analyses. Although object recognition is 
a well-studied problem in the field of computer vision, 
recognizing objects from point clouds of an uncontrolled 
environment such as construction sites remains a 
challenging and unsolved task. Many previous 
algorithms for object recognition were validated based on 
complete scans of small objects (e.g. fruit, household 
objects) obtained in controlled lab settings. In 
uncontrolled settings with the presence of occlusion and 
other objects that share similar features with the target 
object, many state-of-the-art recognition algorithms fail 
to maintain their good recognition rate and speed [13]. 
These problems become even more serious when 
acquiring as-built 3D data from construction sites where 
the presence of huge building structure and a large 
amount of equipment and materials introduce potential 
occlusions to the point cloud acquired regardless of what 
technology is used. As construction projects become 
larger and more complex, obtaining complete 3D data 
becomes even more difficult [14]. In addition, 
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similarities among different types of construction 
equipment (e.g., bulldozer vs. loader) present a 
formidable challenge to object recognition algorithms 
that aim to distinguish between them.  

This study proposes an effective and efficient object 
recognition pipeline that is robust to incomplete point 
clouds and shape variances of construction assets 
including structures, materials, and equipment. This 
paper starts with a thorough literature review on as-built 
data acquisition and modeling, followed by a detailed 
description of methodology applied in the proposed 
approach. The validation of the proposed approach on 
two testbeds is introduced, and the limitations and future 
work on the proposed method are discussed. 

2 Literature Review 

2.1 As-built Data Acquisition in Construction  

As-built data of building components and 
construction assets are important for various applications 
in construction engineering and management. Depending 
on different representations of as-built scene, approaches 
for acquiring as-built data can be categorized as 2D 
image or video based methods, and 3D range data or 
point cloud based methods. This section will review 
multiple technologies belonging to these two categories.  

 2D Image and Video-based Methods 

Recognizing objects in 2D images or videos has been 
extensively studied in the field of computer vision. 
Various techniques are available for object recognition, 
pose identification, and location tracking from 2D images 
or videos captured from of-the-shelf cameras. Given its 
advantages of low cost and minimal infrastructure, 2D 
image or video based techniques have been applied in 
construction for various operation-level applications 
including construction progress monitoring [5], 
construction entity detection and tracking [15], and 
productivity and safety analyses [16][17]. Various 
techniques have been explored to recognize objects (e.g., 
equipment, workers) on construction sites from 2D image 
or video, such as hue, saturation, and value (HSV) color 
space [18], background subtraction [19], histogram of 
color (HOC) [20], and template matching [21].  

 3D Range Data and Point Cloud based 
Methods  

Compared to 2D presentation of construction site, 
3D as-built data provide additional information and 
flexibility for visualization, as-built modeling, and other 

applications that heavily depend on spatial data. The 
most popular technologies for obtaining as-built 3D data 
on construction sites are 3D range imaging camera, 
photogrammetry, and laser scanning. This section will 
briefly review the characteristics of these three 
technologies in their applications in construction 
environments.     

Based on different techniques such as stereo 
triangulation, structured light, and time-of-flight, a 3D 
range imaging camera produces a range image with pixel 
values representing the intensity and range. Although the 
3D range imaging camera has been widely applied in the 
fields of virtual reality and gaming, very few 
investigations of its benefits in construction have been 
undertaken. Such research focused on range data 
processing for real-time site spatial modeling [22]. 
Compared to laser scanners, 3D range imaging cameras 
are more portable and less expensive but they operate in 
a much closer range, and do not provide reliable range 
images when direct sunlight is present, which makes it 
difficult to apply on large construction sites [23][24]. 
While understanding the positive and negative aspects of 
each data acquisition technology in a construction 
environment is important for real-time applications, it is 
also vital to consider the difficulties of data processing 
and extracting useful semantic information out of as-built 
data, regardless of the data acquisition methods.  

2.2 Object Recognition from a Point Cloud   

The typical pipeline of point cloud processing for 
object recognition consists of the following steps. First, 
shape descriptors are computed for each object instance 
or class to be recognized and stored in an offline database. 
Second, point cloud data is examined by an object 
detection algorithm to identify the contained object 
instances or object classes and query descriptors are 
computed for each detected object. Finally, objects from 
the model database with high descriptor similarity are 
aligned with the objects recognized in the point cloud to 
produce a match [1]. A major disadvantage of instance-
based object recognition is that it is not as applicable and 
effective when significant shape variance exists among 
objects [1]. The most common approach in class-based 
object recognition is to use global shape descriptors 
which are less discriminative than semi-local descriptors 
but better adapted to shape variance. However, a major 
challenge is that this approach cannot handle partial or 
incomplete point cloud caused by occlusion or clutter 
[25]. To resolve this problem, one solution is to use 
descriptors that are more robust to shape changes [25]. 
To recognize mobile construction assets such as workers 
and equipment, [7] proposed a projection-recognition-
projection (PRP) method to automatically recognize 
construction equipment from the point cloud. The 3D 



33rd International Symposium on Automation and Robotics in Construction (ISARC 2016) 

point cloud is projected to a 2D space where the 
geometric features represented by a local SURF 
descriptor are compared to a prepared template database 
for recognition. This method is very effective and 
efficient for recognizing target objects that are known to 
be present on the construction site. For unknown objects 
with high shape variance, however, the performance of 
this method is limited.  

2.3 Shape Distribution and Global Shape 
Descriptor  

The concept of shape distribution was introduced by 
[26] to describe the geometric signature of an object. 
Shape distributions are sampled from multiple shape 
functions that measure global geometric properties of an 
object. Distance between two randomly chosen points 
(D2), for instance, is a robust shape function for 
distinguishing different object classes. It should be noted 
that the performance of this method can be compromised 
when the number of classes to be recognized increases or 
only a partial view of the object is available in the point 
cloud. [27] proposed a robust global shape descriptor 
named ESF (Ensemble of Shape Function) for 
recognizing a variety of object classes (e.g., mugs, fruits, 
cars) from point clouds. This descriptor specifically 
addresses the challenge of using partial views in 
incomplete point clouds for object recognition through a 
construction of three distinct shape functions describing 
distance, angle, and area distributions. Each shape 
distribution is represented by an ESF histogram that can 
be used to efficiently retrieve the k-closest matches from 
a pre-defined class database using the k-nearest neighbor 
algorithm (k-NN). Although the ESF descriptor shows 
fairly good recognition rates for small-scale objects such 
as apples (98.45%) and mugs (99.46%), it shows limited 
capability in recognizing large objects such as cars 
(43.64%).  

2.4 Training in Object Recognition  

In addition to a robust description of objects, another 
critical component in object recognition is training the 
object recognition algorithm. Typically, the training 
process consists of the following four steps: 1) gather a 
training set which consists of a number of point clouds of 
the object classes that need to be recognized and label the 
point clouds with desired classifications; 2) determine a 
descriptor to represent the objects in the training set; 3) 
select the structure of the learned function and 
corresponding learning algorithm (e.g., support vector 
machine, k-nearest neighbor, decision tree); and 4) 
determine training parameters and run the learning 
algorithm on the gathered training set. Thus, a new input 

point cloud can be recognized by mapping its descriptor 
to the function inferred by the previously labeled training 
data. Similar to other applications adopting supervised 
learning, the availability and collection of training set is 
a bottleneck due to the lack of a centralized repository for 
point clouds. This problem can be addressed by using 
synthetic point clouds generated from 3D CAD models 
[27]. 

3 Methodology 

To address the limitations in existing object 
recognition techniques, this study proposes a fast and 
automated processing pipeline for construction target 
assets recognition from scattered as-is point clouds. 
Figure 1 shows the processing pipeline for our object 
recognition approach. The pipeline is divided into an 
object detection stage and an object classification stage. 
The two stages are further discussed in detail in the 
following sections. 

 

Figure 1: Flowchart for our object recognition 
approach 

3.1 Object Detection in Laser Scanned Point 
Cloud 

Laser scanned point clouds from construction sites 
often consist of millions of points, which renders the 
post-processing step computationally demanding. Thus, 
a voxel grid representation is used to store point cloud 
data in condensed form in order to achieve an efficient 
object detection pipeline. Next, the RANSAC (Random 
Sample Consensus) technique [28] is employed to filter 
out points belonging to the ground plane. In cases where 
the ground is a uniform flat plane or approximately flat, 
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a single RANSAC pass is sufficient to obtain plane 
parameters while rejecting outliers. For cases where the 
ground consists of multiple planes with different 
gradients, multiple RANSAC passes are required to 
detect each plane. Finally,  the Euclidean distance metric 
[29] is used to combine neighboring points into point 
cloud clusters for each object.  

3.2 Object Classification 

The object classification stage involves generating a 
training database of point cloud samples from objects 
with known categorization and matching query point 
cloud samples to the appropriate category based on 
computed shape descriptors. Further details concerning 
the classification process are discussed in the following 
sections.  

 Synthetic Point Cloud Generation 

Sample 3D CAD models of our desired classification 
categories were downloaded online from 3D Warehouse. 
In this study, construction equipment samples were 
collected from backhoe_loader, bulldozer, dump_truck, 
excavator (backhoe), and front_loader categories (Figure 
2). A ray casting technique was used to sample points 
along the model surface with respect to virtual laser 
scanners placed at multiple view locations around the 
model. For each equipment model, point clouds were 
generated from multiple view angles and the points were 
perturbed with Gaussian white noise to simulate the data 
collection process in real world scenarios. This can also 
be viewed as a form of regularization which allows the 
classifier to be robust to data variability. 

 

Figure 2: Synthetic point clouds of construction 
equipment: (a) backhoe loader, (b) bulldozer, (c) dump 

truck, (d) excavator, (e) front loader 

 ESF Descriptor  

The ESF descriptor describes a 3D point cluster with 

a 640-dimensional set of features encompassing angle, 
area and distance shape functions. ESF is an example of 
a global shape descriptor since it encodes information 
about an object by considering points in the entire point 
cloud without making any prior assumptions about the 
object geometry. In our study, ESF was selected over 
competing descriptors such as VFH (Viewpoint Feature 
Histogram) or SHOT (Signature of Histograms of 
Orientations) due to its better performances in speed and 
robustness with respect to noise and partial views. Figure 
3 shows the distribution of descriptor values of five 
construction equipment categories considered in this 
study. The x-axis describes each dimension of the 
descriptor whereas the y-axis represents the descriptor 
value at that dimension. ESF descriptor calculation is 
performed using the C++ implementation provided in the 
PCL (Point Cloud Library) software suite [30]. 

 

Figure 3: ESF descriptor distribution with 
separate plots representing the mean descriptor 
values for each category 

 Machine Learning 

In the final stage of object classification, class labels 
are assigned to each input point cloud cluster by training 
and applying machine learning classifiers. In addition to 
the k-nearest neighbor (k-NN) algorithm used in the 
original ESF descriptor study [27], we also considered 
the approach of using discriminative classifiers such as 
logistic regression [31] and support vector machine [32]. 
The k-NN method involves picking k training samples 
closest to the test sample in terms of Euclidean distance 
in descriptor space. The output class label is then 
determined through uniform voting over class labels of 
the k nearest training samples. On the other hand, the 
logistic regression approach estimates the class label 
probability using logistic functions and learns a set of 
weights for descriptor elements from the training samples. 
Whereas, the support vector machine (SVM) method 
involves constructing a set of separating hyperplanes in 
high-dimensional space to perform classification. In our 
implementation of SVM, the linear kernel was used 
instead of the RBF (Radial Basis Function) kernel since 

(a) (b) (c) 

(d) (e) 
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the number of features in the descriptor is large. To 
achieve multi-class classification, the one-vs-all and one-
vs-one scheme was used for logistic regression and SVM 
respectively.  

After training and testing samples are obtained, the 
corresponding ESF descriptor is calculated for each point 
cloud cluster. For both training and testing, the descriptor 
values are scaled uniformly to a range of 0 to 1 and 
provided as input to each machine learning classifier. The 
output class labels and class probabilities are computed 
and stored for evaluation purposes. In this study, the 
training and testing processes were implemented using 
the Python toolkit scikit-learn [33]. 

4 Results and Validation 

The validation dataset is composed of laser-scanned 
point clouds collected from a construction equipment 
yard. The data is collected from two sites with seven 
scans each and fused into a single point cloud of around 
8 million points using registration techniques. The 
recognition results are shown in Figure 4. Point cloud 
clusters associated with recognized objects are identified 
with a bounding box labelled with the object class and 
computed class probability. Quantitative evaluation of 
the classification performance is discussed in the next 
section. 

 
Figure 4: Testbench sample recognition results 

In the object classification stage, recognition 
performance was quantified using the recall rate metric, 
which is the number of correctly identified samples 
divided by the total number of samples for each object 
class. Table 1 demonstrates that Logistic Regression and 
SVM classifiers [32] perform better compared to the 
original technique of k-nearest neighbors proposed by 
Wohlkinger and Vincze (2011) with respect to the 
number of correctly classified samples for each object 
category. The SVM classifier shows the highest overall 
recall rate for both and thus is used for all subsequent 
experiments.  

Table 1: Number of correct classifications based on 
classification technique 

Category 
Sample 
number 

K 
nearest 

neighbor 

Logistic 
Regression 

SVM 

Backhoe 
Loader 

3 1 (33%) 2 (67%) 2 (67%) 

Bulldozer 3 0 (0%) 3 (100%) 1 (33%) 
Dump 
truck 

2 0 (0%) 1 (50%) 
2 

(100%) 
Excavator 23 23 

(100%) 
19 (83%) 

22 
(96%) 

Front 
Loader 

9 3 (33%) 4 (44%) 4 (44%) 

Total 40 27 (68%) 29 (73%) 
31 

(78%) 

The effect of variables such as size of training data 
and point cloud resolution on the recall rate can also be 
investigated. Table 2 shows that the recall rate shows a 
general increase as the number of samples of training 
data increases. Table 3 shows that the recall rate increases 
with the resolution of both the training data and the 
testing data. This suggests that the object recognition 
outcome could theoretically be improved given a larger 
amount of training data and higher resolution laser scans. 

Table 2: Recall rate for different sizes of training data  

Training Size (Number of samples) Recall Rate 
48 7% 
96 62% 
144 60% 
192 57% 
240 68% 
288 75% 
336 78% 

Table 3: Recall rate for different combinations of 
training data resolution and testing data resolution 

Testing res. 
 

Training res. 

Downsampled  
by 20% 

Downsampled 
by 5% 

Original 

40 scan lines 55% 53% 60% 
200 scan lines 68% 70% 75% 
400 scan lines 70% 73% 78% 

5 Discussion 

In terms of recognizing construction equipment, we 
demonstrated an overall classification recall rate of 
around 78% for our equipment yard testbench. Recall 
rates was improved using discriminative classifiers such 
as logistic regression and SVM compared to the original 
technique of k-nearest neighbors [27]. We further 
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identified the number of training data and point cloud 
resolution as variables that could affect the recall rate. 
Classification performance for construction equipment 
was analysed using the confusion matrix shown in Table 
4. Overall, the recall rate is high since there is less than 
one instance of wrong classification for all categories 
except for bulldozer and front_loader. The excavator 
category showed high classification performance due to 
its distinctive boom and bucket shape. On the other hand, 
the front_loader category showed less effective 
classification due to high shape variance and thus is often 
confused with other categories such as bulldozer and 
excavator. Overall, the classification method is shown to 
be theoretically sound and robust. The processed 
outcomes would be more viable given a larger amount of 
training data and more complete laser scans. 

Table 4: Confusion matrix for construction equipment 
classes 

Predicted 
Actual Loader 

Bulld
ozer 

Dump 
truck 

Exca
vator

Front 
Loader

Backhoe 
loader 

2 1    

Bulldozer 1 1  1  

Dump 
truck 

  2   

Excavator    22 1 

Front 
loader 

 2 1 2 4 

6 Conclusion 

Our main contributions in this study are to integrate 
pre-processing, detection and classification steps of 
object recognition and classification from scattered point 
clouds into a single efficient recognition pipeline and to 
develop improvements over existing methods. We found 
that scan resolution, scan completeness and the 
availability of real world training data are key variables 
positively correlated with the classification recall rate. 
We were able to achieve promising recognition rates 
even without a large and comprehensive data set, as 
common machine learning applications often operate in 
the big data realm. This was achieved through a more 
rigorous processing of training data and better 
classification techniques. For future work, we envision 
expanding the training dataset, fine tuning the shape 
descriptor, and extending the method to attach multiple 
semantic labels such as coarse and fine categorization to 
each object in a construction site to aid the current 
construction management practices. 
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