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Abstract  
The industrial construction industry makes use of 

prefabrication, preassembly, modularization and off-
site fabrication (PPMOF) for project execution 
because they offer a superior level of control as 
compared to on-site operations. This control is 
enabled by systematic and thorough performance 
feedback loops. Improvement of the feedback 
systems within these facilities will require a 
transition away from suboptimal manual data 
collection to more reliable automated data collection 
and processing. Laser scanners are an effective tool 
for automatically gathering dimensional data but 
extraction of useful information from point clouds 
remains a challenge. The speed of 3D object 
recognition methods depends on the size of the 
search space. Methods for reducing this search space 
are needed in order to improve the performance of 
3D object recognition and subsequent information 
extraction. Large planar objects (e.g. floors and 
walls) constitute a large portion of the search space 
in fabrication facilities, yet are rarely the objects of 
interest for analysis.  In this paper, an automated 
framework for detecting and removing large planes 
in point clouds is presented to speed up object 
recognition. The raw point cloud is first Guassian 
mapped to normal vector space by calculating 
normal vectors at each point. The Gaussian sphere is 
clustered using a density-based clustering algorithm 
and major parallel planes are segmented from the 
rest of the point cloud. The major planes are 
removed and the remaining objects in the scene 
continue on to 3D object recognition. Results show 
the algorithm for automatic plane removal can 
reduce the search space for object recognition by as 
much as 60% or 70%. 
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1 Introduction 

Laser scanning has been profoundly affecting 
project surveying in the construction industry. These 3D 
imaging sensors capture existing structural and 
terrestrial conditions accurately, objectively, and with 
greater continuity than any manual metrology methods. 
Despite these benefits, the potential of 3D imaging for 
applications like automated progress tracking [1] and 
automated dimensional compliance control [2-9] 
remains limited because isolating the object of interest 
from the collected data remains a manual process. 
Manually extracting information from the raw 3D 
images and running analysis is painstaking, requires 
many man-hours and specialized personnel training, and 
therefore discourages adoption by industry. Industrial 
object recognition is the fundamental enabler for further 
developments in automated spatial analysis and 
information flow in construction applications.  

The search space in many industrial scans is largely 
comprised of massive planer objects (i.e. walls, floor, 
and ceiling). For cases where these planes are not the 
focus of the analysis, they clutter the search space and 
substantially slow the recognition of the object of 
interest. Therefore, quick removal of these planes before 
the object recognition process begins is desirable. 

2 Background 

2.1 Industrial Object Recognition 

3D object recognition is the process of detecting the 
presence of an object in a 3D image with similar 
characteristics to a reference image or model and 
mapping the 3D coordinates of the reference to the 3D 
coordinates (or world coordinates) of the detected object 
in 3D space [10,11].  For industrial specific object 
recognition, some of the popular methods found in the 
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literature are based on voxel connectivity [12-14], 2D 
primitive fitting [15-18], classifier training [19], and 
feature and shape descriptor matching [20-23]. 
Although a variety of approaches exist, all are 
negatively impacted by unnecessarily cluttered search 
spaces.  

2.2 Plane Recognition 

A few plane removal algorithms exist in the 
literature, each with varying degrees of performance.  

2.2.1 RANSAC	

Basic RANSAC [24] is comprised of two repeating 
steps: (1) minimal set selection and (2) minimal set 
evaluation. The minimal set for plane removal is a 
single point along with its normal vector, as this 
provides a complete description for a plane. RANSAC 
randomly samples minimal sets from the scan data, fits 
a plane using their description, and counts the number 
of points in the scan that are consistent with the fitted 
plane. After a given number of trials, a plane is 
considered to be recognized at the locations defined by 
the minimal set which achieved a score higher than a 
predefined threshold. Although basic RANSAC is 
conceptually simple, a direct application to plane 
recognition is computationally intensive. Methods for 
speeding up RANSAC have been explored [25].  

2.2.2 Hough	Transform	

The general Hough transform [26] can be used to 
recognize planes within noisy data. It is comprised of 
three steps, (1) repeated transform mapping, (2) 
application of a voting rule and (3) finding the shape 
parameters within the accumulated array of votes. Use 
of the 3D Hough transform for extraction of planar 
faces from point clouds was investigated by Vosselman 
and Dijkman. Randomized Hough Transform is a 
variant of the 3D Hough transform that has proven to be 
especially effective for plane detection in point clouds 
[27,28]. 

2.2.3 Gaussian	Mapping	

An elegant solution for identifying major planes 
within point cloud data includes mapping normal 
vectors to a Gaussian sphere [29,30]. Each cluster on 
the Gaussian sphere represents a direction that is 
perpendicular to major sets of parallel planes. Gaussian 
mapping will be used by the framework presented in 
this paper because of its superior speed of execution on 
large point sets. 

3 Research Methodology 

The framework for automatic plane removal is a pre-
processing step for 3D object recognition. The method 
for planar clutter removal has five steps as outlined in 
Figure 1. Following plane removal, 3D object 
recognition is then performed using a novel method 
based on local data level curvature estimation, 
clustering, and bag-of-features matching [31].  

 

Figure 1: Framework for automatic removal of 
planar clutter objects. 

3.1 Down Sampling 

The point cloud is first down sampled because the 
original point set is usually massive in size with a 
density of points exceeding the amount necessary for 
accurate spatial analysis of any objects of interest. For 
down sampling, a random filter is applied on the 
original point cloud to reasonably reduce its size. The 
down sampled point cloud still adequately represents 
the objects and components without containing an 
excessive amount of points. Down sampling resolves 
the problem of redundancy that causes expensive 
computation with no additional benefit.  

3.2 Calculating Normal Vectors 

In order to detect planar clutter and filter it out from 
the point cloud, normal vectors are calculated and 
provide the primary feature for clustering and 
segmentation. A three step procedure is applied to each 
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point to calculate its normal vector: 

1. Identify the nearest neighbours of a point using K-
Nearest Neighbours (KNN) with K=12. The 12 
closest points to each point constitute the nearest 
neighbourhood for that point and are the set of 
points used for plane fitting. 

2. Plane fitting is performed on the point and 
corresponding neighbourhood identified in the 
previous step. For fitting a plane to a dataset, least-
square adjustment is employed. 

3. The normal vector of the plane, which also 
represents the normal vector of the point being 
investigated, is extracted from the plane fitted to 
the investigated point. 

3.3 Transforming the Point Cloud into the 
Normal Vector Space 

Once a normal vector has been calculated for each 
point in the down sampled point cloud, the point cloud 
is again down sampled and mapped to vector space in a 
process called Gaussian mapping. So rather than each 
point being represented using (x,y,z) in Cartesian space, 
each point is represented by their normal vector 
( ݊௫, ݊௬, ݊௭ ) on a Gaussian sphere (Figure 2). This 
coordinate space transformation will result in 
identification of major planar regions existing in the 
point cloud. A similar transformation is used for 
clustering parallel branches of a pipe spool in a 3D point 
cloud [32]. The transformation will results in a sphere 
with scattered points. 

  

Figure 2: A typical Gaussian sphere of a point 
cloud. Dense point clusters on the Gaussian 
sphere correspond with directions perpendicular 
to major planar objects. 

3.4 Clustering 

For extracting the planar regions in the point 
cloud, a density-based clustering algorithm is 
used. In the normal vector space, planar regions 
are all concentrated around a point, which is the 
normal vector of the plane. In this paper, density-
based clustering of applications with noise 
(DBSCAN) is employed [33]. The advantage of 
using density-based methods rather than 
centroid-based methods is that the noise and 
outliers are removed simultaneously using 
DBSCAN. While in centroid-based methods (e.g. 
k-means clustering), outliers and noise is also 
clustered with the inliers, which causes errors in 
the plane detection phase [34]. In addition, 
DBSCAN does not require the number of 
clusters to be known as a-priori, while in k-
means clustering, the value of ݇ is to be known 
to initiate the clustering process. : (a) Clustered 
points in the point cloud based on DBSCAN 
clustering. (b) Corresponding points are shown 
with similar colours in the down sampled point 
cloud. 

 
Figure 3 shows typical results of major parallel 

plane set detection using DBSCAN on a point cloud. 
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Figure 3: (a) Clustered points in the point cloud 
based on DBSCAN clustering. (b) 
Corresponding points are shown with similar 
colours in the down sampled point cloud. 
As seen in  

Figure 3, major parallel plane sets are clustered, 
because parallel planes have the same normal vectors. 
The major parallel plane sets can then be segmented 
based on Euclidean space separation using an 
appropriate approach such as hierarchical clustering 
(Figure 4). The same approach is used to separate 
parallel branches of a pipe spool that are clustered 
similarly [32]. 

 

 

Figure 4: Segmenting and removing planar 
objects. (a) Normal vectors to major parallel 
plane sets (b) segmented major parallel plane 
sets 

3.5 Filtering out the Planar Clutter 

The segmented planes or clusters, which represent 
the major planes in the point cloud are then removed 
from the original point cloud along with all other points 
within their bounding box. In other words, once the 
planes are detected as the major clusters, the outliers 
which represent the points that are not belonging to the 
planes are kept in the point cloud.  

4 Experimental Validation 

The automated plane removal framework proposed 
is tested on two case studies: a laser scan of the Civil 
Infrastructure Sensing (CIS) laboratory at the University 
of Waterloo (Figure 5) and a scan of an industrial pipe 
spool fabrication facility (Figure 6).  
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Figure 5: : Results of automated plane removal 
case 1, (a) original scan with 8.2 million points, 
(b) scan with major planar clutter removed 
with3.3 million points maintains rich information 
on the pipe spools of interest. 

 

Figure 6: Results of automated plane removal 
case 2, (a) original scan with 7 million points, (b) 
scan with major planar clutter removed with 2.1 
million points. 

In both case studies, a set of pipe spool objects must 
remain in the scans for 3D object recognition and must 
not be affected by the plane removal. During the data 
acquisition, walls and floors are captured by the 
indiscriminant laser scanner and clutter the point cloud 
search space. Such clutter and unwanted objects are to 
be automatically removed, in order to improve the 3D 
object recognition step.  

The object recognition framework used by the 
authors [31] relies on curvature calculation. Knowing 
mechanical/electrical/piping (MEP) components are 
usually non-planar, removing planar regions will reduce 
the processing time for curvature calculation.  

As seen in Figures 5 and 6, major planes captured 
during laser scanning were successfully removed 
automatically using the framework for planar regions 
removal. This removal will result in a significant 
reduction of the point cloud search space. In case study 
1, the original size of the point cloud was approximately 
8.2 million. The plane removal framework reduced the 
size of the point cloud to approximately 3.3 million 
points, a 60% reduction. In case study 2, the original 
size of the point cloud was approximately 7 million 
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points. The plane removal framework reduced the size 
of the point cloud to approximately 2.1 million points, a 
70% reduction Applying the automated plane removal 
framework will down sample the point cloud in a 
supervised way. In other words, down sampling is 
performed without losing the required details in the 
regions of interest (Error! Reference source not 
found.). The clutter and unwanted regions are removed 
automatically. Applying indiscriminant random down 
sampling methods on the original point cloud will also 
reduce the size; however, such algorithms have no 
control on keeping the regions of interest. This will 
impact the accuracy of object recognition and 
subsequent object analysis. Using this plane removal 
framework will resolve this issue. 

The plane removal execution time for both the CIS 
laboratory and industrial fabrication facility is 
approximately 3 minutes. The analyses are 
benchmarked on a computer with a 64 GB RAM and a 
2×1.90 GHz×12 cores. This 3 minute execution time 
consequently reduces the execution time of object 
recognition or object search. The execution time for 
object recognition is proportional to the point cloud size. 
Therefore, the execution time for object recognition in 
case 1 and case 2 were reduced by 60% and 70% 
respectively. 

5 Conclusions and Recommendations 

Unsupervised down sampling of massive point 
clouds resolves the problem of processing time to some 
extent; However, it removes critical information about 
the object(s)-of-interest, and will therefore impact the 
accuracy of extraction of semantic information. A 
supervised down sampling algorithm was proposed. The 
proposed algorithm removes major planar regions from 
the massive laser scans acquired on fabrication shops 
and construction sites. Knowing that the majority of the 
industrial objects (focused in this paper), are non-planar, 
removing planar regions will reduce the point cloud size 
without losing detail and point density in the regions 
that contain the objects to be recognized and analyzed. 
The algorithm requires calculating normal vectors on a 
sub-sampled point cloud. Mapping the point cloud into 
the normal vector space will result in concentration of 
the planar regions around a point, which is normal 
vector to the estimated planar region. Applying a 
density-based clustering step will automatically segment 
the points that are belonging to a major plane in the 
point cloud. The inliers of the fitted plane are then 
removed to reduce the point cloud search space. The 
key observations and results are summarized as follows: 

 Density-based clustering method is suitable for 
planar regions segmentation without knowing the 

number of planes a-priori. Specifically, DBSCAN 
approach is employed to automatically segment 
the planar regions on the normal vector space. 

 The object recognition accuracy is not reduced 
because the down sampling framework only 
removes the planar regions. 

 Experimental tests showed that the proposed 
framework can typically reduce the processing 
time for cylindrical object recognition down by as 
much as 60% or 70%. 

Evaluating effective variants on the validation 
metrics can be a potential extension for future research. 
In this paper, effective variants such as the search region 
for plane fitting, and the thresholds for DBSCAN 
clustering are fixed. Obviously, these parameters must 
be calibrated to generalize the framework. Integrating 
the developed framework with some other processing 
steps, such as automated discrepancy analysis and 
automatic realignment of defective assemblies are other 
potential applications that the authors are currently 
investigating. 
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