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Abstract – Although Industry Foundation Classes 

(IFC) provide standards for exchanging Building 

Information Modeling (BIM) data, authoring tools 

still require manual mapping between BIM entities 

and IFC classes. This leads to errors and omissions, 

which results in corrupted data exchanges that are 

unreliable and compromise the interoperability of 

BIM models. This research explored the use of two 

machine learning techniques for identifying 

anomalies, namely outlier and novelty detection to 

determine the integrity of IFC classes to BIM entity 

mappings. Both approaches were tested on three BIM 

models, to test their accuracy in identifying 

misclassifications. Results showed that outlier 

detection, which uses Mahalanobis distances, had 

difficulties when several types of dissimilar elements 

existed in a single IFC class and conversely was not 

applicable for IFC classes with insufficient number of 

elements. Novelty detection, using one-class SVM, 

was trained a priori on elements with dissimilar 

geometry. By creating multiple inlier boundaries, 

novelty detection resolved the limitations encountered 

in the former approach, and consequently performed 

better in identifying outliers correctly. 
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1 Introduction 

Models based on the Building Information Modeling 

(BIM) paradigm are increasingly being used for multiple 

applications, including clash detection, building code 

compliance, design quality assurance, constructability 

analysis, design and construction coordination. Many of 

these applications require specialized software, which in 

turn require BIM models to be exported and exchanged 

between them. 

The Industry Foundation Classes (IFC) plays a 

pivotal role in enabling interoperability, allowing entity 

and relationship data to be exchanged seamlessly 

between applications. However, the IFCs does not 

necessarily guarantee that the integrity of the data is 

maintained. For example, major BIM authoring tools, 

although abide by the Model View Definitions (MVD) in 

exporting data, still allows individual components and 

relationships to be mapped to IFC classes manually, and 

are thus susceptible to human errors and omissions.  

Moreover, BIM models are becoming larger and 

more complex. Depending on the Level of Development 

(LOD), the number of elements in a single model can 

range from 1,000’s to 10,000 components. Manually 

checking the integrity of IFC entity and relationship 

mapping can quickly become intractable, as the size and 

complexity of the models increases.  

This research addressed this issue by applying 

machine learning techniques to identify errors or 

omissions in the data integrity of IFC models. 

Specifically, using geometric features, anomaly detection 

techniques are applied to determine whether BIM 

components have been properly mapped to their correct 

IFC classifications.  

The research used existing work performed by from 

[1] as its initial point of departure. [1] proposed using 

‘outlier detection’ to check the correct classification of 

individual elements. To verify the scalability of this 

approach, we first performed outlier detection on two 

BIM models with increasing components, from which we 

identified specific limitations. Subsequently, we 

explored an alternative anomaly detection approach, 

namely, ‘novelty detection’ which proved to be more 

effective in identifying potential misclassifications.  

The research conducted herein is anticipated to 

enhance the robustness of IFC usage, and contribute to 

the proliferation of machine learning techniques in the 

AEC domain, including areas of quality control and 

regulation compliance. 

The rest of the paper is structured as follows. Section 

2 provides background on the state of IFC development 

and the need for IFC integrity checking. Section 3 

provides an overview of the research methodology, while 

Section 4 describes the results and limitations of using 

outlier detection on two architectural BIM models. 

Section 5 describes how novelty detection was 

incorporated, and tested on the same architectural models. 
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Section 6 compares the results and discusses the 

implications of the research. 

2 Motivating Background 

2.1 The need for IFC integrity checking 

Major BIM authoring tools provide functionalities to 

selectively map BIM elements to their corresponding IFC 

classes. These tools offer default settings that have 

prespecified mappings of the most common elements to 

their corresponding IFC classes. However, such is not the 

case for more obscure IFC classes, which requires 

manual settings, which may lead to errors and omissions. 

Also, many authoring tools allow the use of generic 

libraries, which do not pertain to a specific IFC class. For 

example, Revit allows the creation of custom families or 

model-in-place components, which does not map to 

specific IFC classes, unless specified otherwise by the 

model developer.  

Furthermore, authors of BIM models may not care for 

the strict designation of IFC classes, or even the BIM 

elements themselves, and loosely use families of their 

choosing or even customized ones.  

Such misclassifications, whereas trivial in small BIM 

models, may become difficult to detect manually once 

BIM models become large and with detailed level of 

developments.  

In a collaboration environment, where project 

stakeholders individually develop BIM models, such 

misclassifications can cause severe interoperability 

issues between them.  

The next section briefly introduces tools and 

standards that have been developed to ensure IFC model 

integrity checking, followed by a summary of their 

limitations.  

2.2 Existing approaches for IFC integrity 

checking 

Although IFCs provide a standardized format to share 

BIM information, the complexity in its schema often 

requires a domain expert experienced in STEP and 

EXPRESS to verify its integrity. Practitioners without 

such knowledge find it difficult to readily employ IFC 

based models for everyday use [2]. Consequently, several 

advancements have been made that supports the checking 

of IFC file formats and support users in ensuring their 

integrity.  

2.2.1 Tools for checking the integrity of IFC data 

structures 

buildingSMART International (bsI), the main 

                                                             
1 Korea Building Information Modeling Standards 

organization that manages and develops IFC standards, 

provides the Information Delivery Manual (IDM) and 

Model View Definition (MVD) that allow processes to 

be formalized and generate subsets of IFC entities and 

relationships. MVDs such as the Coordination View and 

COBie are used extensively in the industry. 

bsI also provides an ‘ifcDoc’ tool to check the 

consistent and computer-interpretable definition of 

MVDs as legitimate subsets of the IFC specification with 

enhanced definition of concepts. 

[3] developed an ‘mvdXML Checker’ to evaluate the 

integrity of IFC files, while the commercial software 

‘Solibri Model Checker’ is used widely in the industry to 

check the conformity of IFC class and entity data 

between BIM authoring tools. The National Institute of 

Standards and Technology (NIST) provides the ‘IFC File 

Analyzer,’ which enables a semi-automated approach to 

verify IFC classes and relationships in an IFC-SPF file.  

2.2.2 Development of BIM Query Languages 

The complexity of the IFC format has also created the 

need for BIM Query Languages. These languages allow 

the development of SQL based statements using 

{SELECT, FROM, WHERE} command constructs to 

query BIM models and IFC-SPF files. Initially, query 

languages based on EXPRESS and EQL were explored 

Tauscher et at., 2016. Later, BIMQL [4] and QL4BIM [5] 

were developed, which were customized exclusively for 

BIM/IFC models, as well as general purpose query 

languages using ifcOWL and SPARQL [6].   Such 

advances allowed specific querying of IFC-SPF files, 

which could be utilized to check for their integrity.  

2.2.3 BIM Modeling Standards  

A more macro-level approach has been where AEC 

institutions have provided standards and guidelines for 

working with BIM models and IFC formats. Namely, the 

American Institute of Architects (AIA)’s provides the 

‘Documents E203 and G202: Building Information 

Modeling Protocol Exhibit’ [7], while UK’s Construction 

Industry Council (CIC) provides the ‘BIM Protocol.’ 

Similar attempts have been developed for Korea in the 

form of ‘KBIMS1.’ 

Such standards provide guidance in standard work 

breakdown structures, the Level of Development (LOD) 

of BIM models, libraries templates, and project 

management matrices to ensure that interoperability is 

maintained throughout the project life cycle and between 

project stakeholders sharing multiple BIM models. These 

guidelines can assist in ensuring that BIM/IFC models 

are correctly mapped to ensure their integrity.  
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2.3 Limitations of existing approaches 

The variety of tools for evaluating IFC entities and 

relationships improves the deciphering of IFC data, but it 

is still by and large a manual process. Similarly, BIM 

query languages can improve the checking ability but 

essentially has not been developed for ensuring IFC 

integrity. The standards and guidelines encourage the 

correct associations and mapping of elements through 

best practices, but do not necessarily guarantee them. 

Thus, there still exists a need for tools or methods directly 

dedicated to IFC integrity checking, and is the main 

objective of this research.  

3 Research Methodology 

This research explored two approaches for 

identifying misclassifications of BIM elements to IFC 

classes using anomaly detection techniques: outlier 

detection and novelty detection.  

The first approach is adopted from [1]. Krijnen and 

Tamke, here after referred as “Krijnen’s approach”, 

explored the use geometric features of individual 

components to detect misclassifications using outlier 

detection. However, at least in the paper, the approach is 

not fully validated in terms of its scalability to generic 

BIM models. They only provide an example 

implementation to one IFC class (i.e., walls) within a 

single BIM model. Thus, the first step in our research 

involved identifying potential limitations in their 

approach by applying their implementation to multiple 

BIM models with larger number of BIM elements and 

IFC classes.  

Based on these results, a second approach was 

devised, which primarily used novelty detection as an 

alternative to address the limitations found in Krijnen’s 

approach. We selected novelty detection as it allows 

multiple boundaries for inliers, whereas outlier detection 

typically is limited to a single inlier boundary. Also, 

while Krjinen’s approach limited the analysis to elements 

within a single BIM, the novelty detection approach was 

implemented to learn features from multiple BIM models.   

4 Verification of Krijnen’s approach 

using outlier detection 

This section provides an overview of Krijnen’s approach, 

and two cases of its applications to BIM models. Results 

of the case studies were used to identify limitations of the 

approach and provide the basis for implementing novelty 

detection.  

4.1 Overview of Krijnen’s approach 

As shown in Figure 1, given a single BIM model, 

outlier detection is performed on individual IFC classes 

(i.e., ifcWallStandardCase, ifcWindow, ifcDoor, etc.) to 

detect potential model components that are geometrically 

dissimilar to other components of the same class. The 

geometries are used as features for the analysis, and 

include the area, volume, radius of gyration, orientation 

from top and bottom of the individual components. The 

premise is such that elements of the same IFC class 

should have similar geometric features, and thus a 

misclassified component will stand out and be detected 

as an outlier.  

 

Figure 1. Process overview for outlier detection  

[1] developed and applied a suite of open source 

Python packages to implement their approach. 

Specifically, ifcOpenShell [8] allows the manipulation 

and query of IFC entities directly from IFC-SPF files. 

PythonOCC [9] is also used to extract individual 

geometric features needed for outlier detection. Finally, 

the packages from scikit-learn toolkit are used for 

implementation of the outlier detection algorithm [10].  

[1] provides an example by applying their 

implementation on the wall elements (i.e., 

ifcWallStandardCase) of a duplex apartment BIM model 

[10]. Their approach identified several elements which 

are classified as walls but should have been classified as 

a beam or opening. The results are visually demonstrated 

using a contour plot (i.e., elliptical envelope) and 

highlighting the misclassified elements (i.e., outliers) in 

the BIM model. 

The outlier detection used in Krijnen’s approach 

calculates the Mahalanobis distance of the geometry 

features to detect outliers in individual IFC classes.  

The Mahalanobis distance is widely used in lieu of 

Euclidean distance in identifying outliers for multivariate 

datasets [11]. A problem with multivariate data is the 

effect of covariance between the variables, which cannot 

be resolved using the Euclidean distance. The 

Mahalanobis distance overcomes the problem by 

calculating and using the eigen vectors to transform the 

main axes of the variables, in effect negating their 

correlations.  

The Mahalanobis distance is calculated using the 

following equation,  

𝐷(�⃗�) = √(�⃗� − 𝜇)𝑆−1(�⃗� − 𝜇) (1) 
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where, �⃗� = (𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑛)𝑇 is the vector of observed 

data; 𝜇 = (𝜇
1

, 𝜇
2

, 𝜇
3

, ⋯ , 𝜇
𝑛

)𝑇  is the vector of average of 

the observed data, and S is the covariance matrix.  

The calculated distance 𝐷 can be visualized using an 

Elliptical Envelope as shown in Figure 2. The blue 

dashed ellipses represent statistically equivalent contours 

(i.e., boundaries), based on which outliers and inliers are 

distinguished.  

  

Figure 2. Output diagram using the Elliptical 

Envelope method for anomaly detection 

4.2 Case Studies  

Krijnen’s approach was applied to two BIM models 

and their results are described as follows.  

4.2.1 Case study 1: Duplex apartment model 

The first model is the duplex apartment model, which 

was used in Krijnen’s initial work. The BIM model has 

159 elements (i.e., subtypes of IfcBuildingElement), 

which include beams, coverings, walls slab and roof. 

Table 1 details the results of performing the outlier 

detection for the individual IFC classes. Of the 159 

elements, 9 outliers were detected in the walls (ifcWall, 

ifcWallStandardCase), slab (ifcSlab), window 

(ifcWindow) and doors (ifcDoor). 

The following section describes the individual results 

for each of these classes. 

  

Figure 3. The duplex apartment BIM model 

Table 1. Results of outlier detection for the duplex 

apartment BIM model 

IFC Class # of 

totals 

# of 

inliers 

# of 

outliers 

Analysis of 

Results 

ifcBeam 8 8 0 - 

ifcCovering 13 13 0 - 

ifcWall (incl. 

ifcWallStand

ardCase) 

57 54 3 1 outlier 

represents 

misclassification, 

in which, a beam 

is misclassified as 

ifcWall 

2 outliers are 

walls, but have 

openings 

ifcSlab 21 18 3 1 outlier has 

different geometry 

than inliers 

2 outliers are 

slabs, but have 

openings 

ifcRoof 1 1 0 - 

ifcFooting 7 7 0 - 

ifcWindow 24 23 1 1 outlier has 

different height to 

inliers 

ifcDoor 16 14 2 2 outliers have 

different width 

than inliers 

ifcStair 4 4 0 - 

ifcRailing 4 4 0 - 

ifcMember 4 4 0 - 

Total 159 150 9 
 

4.2.2 ifcWall, ifcWallStandardCase 

The outlier detection identified three entities from 57 

wall elements.  Table 2 shows the samples of the BIM 

elements, with their corresponding Mahalanobis distance 

values. One of these elements was identified as a beam, 

as shown in Table 2. Thus, this demonstrates a successful 

detection of a misclassified element. However, the other 

two elements are walls with openings. These elements 

are walls, and the approach has identified them as outliers 

due to their dissimilar geometry from the most generic 

wall instances.  

Table 2.  Summary of inliers and outliers for wall 

elements 
 

Inliers Outliers  
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# of 

items 
54 1 2 

M dist 2.32 11.08 14.74 

4.2.2.1 ifcSlab 

Three outliers were detected from 21 of the slab 

elements (Table 3). In this case, however, these are 

misclassifications as one of the elements are actually 

slabs with differing geometry and the latter two are also 

slabs with openings. 

Table 3.  Summary of inliers and outliers for slab 

elements 
 

Inliers Outliers 
 

   

# of 

items 
18 1 2 

M dist 2.84 16.05 19.05 

4.2.2.2 ifcWindow and ifcDoor 

The outlier detection identified a single window and 

two doors as outliers (Table 4 & 5). Again, these were 

identified due to their dissimilar shape compared to the 

majority of the windows and doors.  

Table 4.  Summary of inliers and outliers for wall 

elements 
 

Inliers Outliers 
 

 

 

# of 

items 
24 1 

M dist 3.40 16.22 

Table 5.  Summary of inliers and outliers for door 

elements 
 

Inliers Outliers 

 

 
 

# of 

items 
16 2 

M dist 3.45 11.80 

4.2.3 Case study 2: Medical Clinic model 

A BIM model of a Medical clinic, provided by [12], 

was used for the second case study. The model was 

chosen as it was a larger model than the duplex model, 

with a total of 1,232 BIM elements. Also, the walls and 

doors comprised the most number of elements, having 

more dissimilar elements within their respective classes. 

Thus, it provided a good candidate to determine the 

performance of the outlier detection.  

  

Figure 4. The Medical Clinic BIM model 

As shown in Table 6, outliers were only found in the 

walls and doors.  

The following sections describes the results with 

respect to the individual IFC classes with identified 

outliers. 

Table 6. Results of outlier detection for the Medical 

Clinic BIM model 

IFC Class # of 

totals 

# of 

Inliers 

# of 

Outliers 

Analysis of 

Results 

ifcDoor 254 230 24 Classifiers 

doors in 

curtain walls 

as outliers 

ifcRailing 9 9 0 - 

ifcSlab 3 3 0 - 

ifcStair 9 9 0 - 

ifcWall 

StandardCase 

1080 1025 55 Classifies 

walls with 

openings or 
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walls with 

curvatures as 

outliers 

ifcWindow 58 58 0 - 

Total 1,413 1,334 79 
 

4.2.3.1 ifcWallStandardCase 

55 outliers were found out of the 1,080 wall elements. 

As shown in Table 7, 53 of the elements were found to 

be dissimilar as these had openings, while two of them 

were curved walls.  

4.2.3.2 ifcDoor 

24 outliers were identified out of the 254 doors. As 

shown in Table 8, 20 of the outliers were doors with glass 

panes, while the other four were doors inside curtain 

walls.  

Table 7. Summary of inliers and outliers for wall 

elements 
 

Inlier Outlier 
 

 

 

 

# of 

items 
1025 53 2 

M dist 0.96 40.95 29.84 

Table 8. Summary of inliers and outliers for door 

elements 
 

Inlier Outlier 
 

 

 

 

# of 

items 
230 20 4 

M dist 0.13 40.95 34.54 

4.3 Summary of the Results  

The following summarizes the main limitations of 

Krijnen’s approach identified from the two cases.  

• Krijnen’s approach classifies elements that are 

dissimilar to the most numerous element as outliers. 

This problem becomes accentuated as the number 

of elements in classes increases. This problem 

stems from the fact that the Mahalanobis distance 

assumes a Gaussian distribution of the data, and 

thus is not suited for multi-modal distributions. That 

is, the Mahalanobis distance identifies a single 

inlier boundary and thus any other elements are 

taken to be outliers. 

• On the other hand, Krijnen’s approach will be 

limited when there are too few elements in a single 

class, as the outlier detection algorithm does not 

have enough elements to detect an inlier boundary. 

• A more practical limitation is that Krijnen’s 

approach uses a single BIM model, and thus the 

‘learning’ is lost a posteriori analysis. 

5 Approach using novelty detection 

The second approach used was novelty detection. 

Novelty detection uses a training set that is not polluted 

by outliers, and is interested in detecting anomalies in 

new observations. Novelty detection can identify 

multiple inlier boundaries and can first be trained using 

datasets prior to the detection of outliers. Thus, it allows 

the use of data from multiple BIM models, a feature 

which was utilized in its implementation. 

5.1 One-class SVM 

Novelty detection can be implemented using one-

class Support Vector Machines (SVM) [13]. SVM are a 

type of supervised learning used either for regression or 

linear classification. SVMs are referred to as large 

margin classifiers because the underlying algorithm 

attempts to identify the hyperplane that best represents 

the largest separation, or margin, between two classes. 

SVMs can also be used as a nonlinear classifier when 

used with kernels, which are similarity functions that 

enable the computation of new features as to manual 

selection (e.g., high order polynomials).   

When using SVM’s for novelty detection, it is not 

possible to know a priori the type of outliers that may 

arise, and thus difficult to comprise a training set.  In such 

cases, one-class SVM is used, in which the data set only 

includes inliers, and is thus a form of semi-supervised 

learning [14]. 

5.2 Novelty detection implementation  

Figure 5 shows the overall process used to implement 

novelty detection.  

• Model elements from three BIM models (i.e., the 

Duplex, Clinic and a third residential model) were 

classified and stored separately with respect to their 
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IFC classes. 

• The datasets were then used to train individual one-

class SVM’s.  

• All one-class SVM’s used a non-linear Radial Basis 

Function (RBF) for their kernels.  

• Each trained model was further refined by 

modifying the hyperparameters, 𝜇 and 𝛾 to find the 

values resulting in the highest true negative rates.  

  

Figure 5. Process overview for novelty detection 

5.3 Validation 

Validation was performed for each IFC class by using 

a test set where 10% of the data included outliers (i.e., 

elements of different IFC entities), and measured whether 

the one-class SVM correctly detected them.  

An example is provided for ifcWallStandardCase, 

which included 2,321 wall elements. As shown in Figure 

6, the trained one-class SVM identifies two major 

boundaries for the walls. Given the test set, it 

successfully identifies outliers (depicted as yellow 

points), as abnormal observations. By tuning the model’s 

hyperparamters (𝜇=0.3, 𝛾=0.1), the model achieved a 

true negative rate of 0.983 (Table 9). 

Table 10 provides the results for the other IFC classes, 

especially those that encountered misclassifications 

using outlier detection. The true negative rates 

demonstrate that outliers were correctly identified for 

each of these classes.  

  

Figure 6. Novelty detection results for 

ifcWallStandardCase 

Table 9. Results of novelty detection for the wall 

elements with tuned hyperparameters 

𝜇 𝛾 Precision Recall TNR Accuracy 

0.1 0.1 0.970 0.908 0.470 0.887 

0.1 0.3 0.978 0.903 0.609 0.888 

0.3 0.1 0.999 0.698 0.983 0.712 

0.3 0.3 0.983 0.698 0.774 0.817 

Table 10. Results of novelty detection for other IFC 

classes 

IFC Class # of Total 

(outlier) 

Prec-

ision 

Recall TNR Accuracy 

IfcWall 

StandardCase 

2321 

(115) 

0.97 0.91 0.47 0.89 

IfcSlab 92 

(8) 

1.00 0.55 1.00 0.59 

IfcCovering 388 

(35) 

1.00 0.91 1.00 0.95 

IfcDoor 289 

(26) 

1.00 0.88 1.00 0.89 

IfcWindow 134 

(12) 

1.00 0.80 1.00 0.81 

6 Comparison of the two approaches 

As shown in Table 10, results of the novelty detection 

approach addressed the main limitations identified in the 

outlier detection approach. Because novelty detection 

creates multiple boundaries, it could classify different 

types of elements as inliers, while correctly identifying 

other class elements as outliers. By creating data sets 

BIM Model database

Grouping by IfcType

Extract geometry and divide 
inlier and outlier set

One-class SVM Model

Outlier Detection

Duplex Smiley Clinic

• • •

Inlier setOutlier set

Training set : 100% inliers

Test set : 90% inliers
+

10% outliers Test set

IfcWall IfcSlab IfcDoor

Features

• Area
• Volume
• Gyration

• Distance to Top
• Orientation
• Other

IfcWall IfcSlab IfcDoor Other

• Simple : Duplex

• Normal : Smiley

• Complex : Clinic

• IfcWall : 2321
• IfcSlab : 84
• IfcDoor : 353

• • •

Train

Test
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using elements from multiple BIM models, the approach 

also did not suffer from insufficient numbers of data 

points, as was the case with outlier detection. 

Figure 7 shows an ROC curve that compares the 

accuracy of the two approaches, when applied to all 

elements of the ifcWallStandardCase class.  The area 

under the curve (AUC) is 0.848 for novelty detection, 

which demonstrates higher performance to outlier 

detection, whose value is 0.665.  

 

Figure 7. ROC curves for outlier and novelty 

detection using ifcWallStandardCase 

7 Conclusions 

The IFCs provide a critical role in ensuring the 

interoperability of BIM models. Ensuring their integrity 

is thus a fundamental premise for enabling collaboration 

within the BIM framework. This research examined two 

techniques in anomaly detection for checking potential 

errors and misclassifications in the mapping of individual 

BIM elements to IFC entities. Results showed that 

novelty detection was superior in terms of overcoming 

the limitations identified in outlier detection, especially 

in terms of the ability to train one-class SVM’s to identify 

multiple boundaries of elements within the same IFC 

class. However, both approaches are limited in restricting 

features to geometry and not utilizing the semantic 

relationships between elements within a BIM model. 

Future research will attempt to address this need by 

adopting structuring learning techniques (e.g., 

conditional random fields) to enhance the classification 

capabilities of these algorithms.  
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