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Abstract – Pavement crack detection using computer 

vision techniques has been studied widely over the 

past several years.  However, these techniques have 

faced several limitations when applied to real world 

situations due to for example changes of lightning 

conditions or variation in textures. But the recent 

advancements in the field of artificial neural networks, 

especially in deep learning, have paved a new way for 

applying computer vision methods to pavement crack 

detection. Even though deep learning has been used 

before for crack detection, the network used is rather 

shallow when compared to the current networks used 

for other applications. In this paper we demonstrate 

the effectiveness of using deeper networks in 

computer vision based pavement crack detection for 

improved accuracy. We also show how variations in 

location of training and testing datasets affect the 

performance of the deep learning based pavement 

crack detection method.  
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1 Introduction 

Pavement crack detection is one of the most 

important tasks that needs to be performed to ensure safe 

driving. The current non-computer vision methods 

involve the visual inspection of pavements by human 

workers. But this method is uneconomical, labor 

intensive, human error-prone, subjective and expert 

domain knowledge is required. Laser scanning based 

pavement crack detection methods have been proposed 
as a solution for this [1] and they have shown great 

promise by achieving high accuracies. But these methods 

are highly expensive and therefore not suitable to be 

deployed in a large scale. 

Hence a lot of research has gone into use of 

economical computer vision based methods for 

automated detection. The traditional methods generally 

have two parts: the first part involves extracting a set of 

hand engineered features from images, and in the second 

part a classifier is used for classifying these features. 

Some of these computer vision based pavement crack 

detection methods include use of local binary patterns 

(LBP) [2] [3], tree structure based algorithms [4], Gabor 
filter based methods [5] and shape based algorithms [6]. 

But one main disadvantage is their inability to generalize 

the task of crack detection when exposed to real world 

conditions such as variation in lighting or change in 

pavement surface textures. That is, these methods fail to 

capture enough discriminative features from the images 

that can differentiate between cracked and non-cracked 

images even when the environmental conditions change. 

But over the past few years a branch of artificial 

neural networks called deep learning has shown great 

potential in solving similar problems. The field of deep 
learning started gaining popularity in 2012 when Alex et 

al. demonstrated their deep network architecture named 

AlexNet [7] for image classification which outperformed 

all the existing methods with hand engineered features by 

a great margin. Since then the field of deep learning has 

witnessed exponential growth both in size (depth) of deep 

networks, e.g., VGG Net (19 layers) [8], GoogleNet (22 

layers) [9], ResNet (152 layers) [10] as well as their 

application to several fields such as image classification 

[7], speech recognition [11], or image segmentation [12].  

But this approach of using deep learning has not been 
studied well in context of pavement crack detection. 

Applying deep learning to computer vision based 

automatic pavement crack detection can overcome most 

of the existing challenges. In [13] Lei et.al presented a 

particular deep learning architecture called deep 

convolutional neural networks (CNNs) for pavement 

crack detection using a four layer network. But a 4 layer 

network could only be considered as a shallow network 

when compared to the current networks used for other 

applications, which is a drawback for [13].  The ability of 

the convolutional networks to give high accurate results 

is highly dependent on the depth of the network as shown 
in [14]. Hence using deeper networks could improve the 

accuracy of crack detection. So in this paper we intend to 

demonstrate the capabilities of deep learning in pavement 

crack detection when deeper networks are used. We 

demonstrate that an increase in the number of layers leads 

to an increase in the accuracy of the network in detecting 

cracks. In addition to that we also show how the 

variations in the location for data collection of training 
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dataset and testing dataset affect the performance of the 
network – i.e. how learning can be transferred to other 

locations. 

   

Our contributions can hence be summarized as follows: 

 We study how the depth (the number of layers) 

of the deep neural networks effects the 

performance of crack detection capability of the 

network. 

 We study how the variations in location from 

which the training and testing data is collected 

affect the performance of the system. 

2 Proposed methodology  

The objective of the deep neural network used here 

is to take the input image patch of the pavement, process 

it and classify it into either of the two classes: crack or 

non-cracks. In this section the details of the datasets 

(training and testing) and the basic architecture of deep 

network architecture used in the study are explained.  

2.1 Deep network architecture 

This paper uses a particular deep learning architecture 

called deep convolutional neural networks (CNNs) for 

pavement crack detection. Like every other neural 

network, convolutional neural networks are also created 

by stacking several layers of neurons together. The 

higher the number of layers, the deeper the network will 

become. The primary layers used in a convolutional 

neural network are: convolutional layers, pooling layers, 
activation layers and fully connected layers. It also uses 

auxiliary dropout layers between the above mentioned 

layers to avoid overfitting of data [7]. Each of these layers 

are explained in detail in the following subsections. 

2.1.1 Overall Structure 

Fig. 3 illustrates the basic network architecture used 
in this study. It has 4 convolutional layers (marked as 

Conv), 4 max pooling layers (marked as Maxp), 2 fully 

connected layers (marked as FC), activation layers after 

every convolutional and fully connected layer and a 

softmax layer (marked as Softmax) at the end of network. 
It also uses an auxiliary dropout layer (marked as 

Dropout) between the fully connected layers to avoid 

overfitting. 

 

2.1.2 Convolution layers  

The convolutional layers are the major building 
blocks of a convolution neural network structure. It is the 

convolution layers that learns the features that are 

suitable for differentiating between a crack image and a 

non-crack image. The local features required for this are 

learned by initial convolutional layers whereas the deeper 
layers learns the global feature required for 

differentiating between cracks and non-cracks. . Each 

convolution layer performs the convolution operation in 

outputs of the previous layers using a set of kernels or 

filters called receptive fields. Fig. 1 illustrates an example 

for the operation of convolutional layers. The matrix in 

the left is the input to the convolutional layer, the matrix 

in the middle is the kernel and the matrix to the right is 

the output of the convolutional layer. The output is 

obtained by convolving the kernel over the input layer. 

The weights used in the kernels of these convolutional 
layers are learned during the training of the networks. 

 

 

 

Figure 1: Convolutional operation 

 

2.1.3 Pooling layers 

The pooling layers are used for down-sampling of the 
input arrays. It performs down-sampling by dividing the 

input matrix into submatrices and selecting one value to 

represent each of the submatrix. There are two main types 

of pooling layers used: the max pooling and mean 

pooling layers. In max pooling the maximum value in the 

submatrix is taken to represent the submatrix where as in 

mean pooling the mean of the submatrix is taken. In [15] 

Scherer et al. has shown that max pooling is more 

effective than mean pooling in object classification tasks. 
Hence, we have used max pooling in our network. Fig. 2 

illustrates the max pooling operation. The input matrix of 

size 4x4 is divided into 4 submatrices. Then the max 

value in each of the submatrix is taken and the output 

matrix is created using these values.  

 

 

 

Figure 2: Max pooling  
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2.1.4 Activation layers 

Activation layers are another important building 

blocks of convolutional networks. The activation layers 

are used for giving non-linearity to the neural networks. 

The earlier neural networks used functions such as 

y=tanh(x) as activation functions, but in 2010 Nair et al. 

[16] introduced a very effective activation function called 

ReLU. Fig. 4 shows the ReLU activation function. One 

of its main advantages is that it has zero output when the 
input is negative and has the same value as input when 

the input is positive. And hence the gradients of the 

activation functions are always either 1 or 0 and this helps 

to avoid the problem of vanishing gradients [17] in 

deeper neural networks. The vanishing gradient problem 

occurs when the gradient of the activation function 

becomes smaller than what the neural networks can 

handle. In ReLU the gradient of the function will either 

be zero (when input is less than zero) or will sufficiently 

be big enough value (when input is greater than zero). 

Thus ReLU helps to avoid the problem of vanishing 

gradient caused by activation functions. 
 

 

Figure 4: ReLU activation function 

2.1.5 Softmax layer 

Softmax layer is the layer located at the end of the 

convolutional neural network.  This layer is responsible  

 

 

for predicting the probability of the input belonging to 
each of the two labels, i.e., crack or non-crack. This layer 

uses the softmax function for predicting the output. The 

layer gives the probabilities of, the input image patch 

belonging each of the two classes: i.e. crack and non-

cracks. 

 

2.1.6 Softmax loss function and Stochastic 

gradient descent  

The main objective of training a convolutional neural 

network is to find a set weights for the layers which 

minimises a cost function or objective function. An 

optimization algorithm is generally employed for this 
purpose of finding the set of weights that optimises the 

objective function. Categorical cross entropy loss 

function is used as the objective function in the networks 

used in this study. It computes the categorical cross 

entropy between the targets and the predictions of the 

networks. The optimisation algorithm used here is the 

stochastic gradient descent (SGD) optimisation 

algorithm. In SGD optimisation algorithm the images are 

processed as small groups called batches rather than each 

image individually to reduce the computational cost. A 

batch size of 48 images are used for training networks in 
this paper. A learning rate of .0001 with decay of .0005 

and momentum of 0.9 used, following the common 

practices used for training neural networks. A total of 80 

and 40 epochs were used for training experiments 1 and 

2 respectively, where epoch is defined as the number of 

times the network is trained using the entire set of 

training images. 

2.2 Data collection 

In this study we use the dataset collected by Lei et al. 
in [11]. This dataset consists of 500 RGB pavement 

images, each with a resolution of 3264 x 2448 pixels 

collected around the premises of Temple University, 

Figure 3: The structure of the Convolutional Network architecture used 
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USA using smart phones. Each image was then divided 
into patches of size 99x99 pixels creating a subset of 

RGB images. These patch images were then annotated by 

several annotators. Each image patch was labeled either 

as cracked patch or non-cracked patch. This process of 

annotation is explained in detail in [11]. In order to 

optimize the computational cost of training deep 

networks on large datasets only two subsets of this 

original dataset were used for training and testing 

purposes during experiments described in this paper. Fig. 

5 illustrates a few sample crack and non-crack image 

patches taken from the dataset. 
 

 

       
 

 

      
(a) 

 

     
 

 

     
(b) 

 

2.2.1 Subset 1 

Subset 1 has two sets of data: a training set and a 
testing set. The testing set consists of 100,000 RGB crack 

image patches and 100,000 RGB non-crack image 

patches totalling to a set of size 200,000 image patches 

which are randomly selected. The training set consists of 

another randomly selected 40,000 image patches 

consisting of 20,000 crack and non-crack patches. It was 

made sure that the training and testing sets are mutually 
exclusive. These training and testing datasets in subset 1 

are used for experiment 1 (explained later). 

2.2.2 Subset 2 

Similar to subset 1, subset 2 also has two sets of data: 
a training set and a testing set. It has a training set of 

20,000 image patches each, of cracks and non-cracks 

category totalling to 40,000 image patches selected by 

uniform sampling from the first 240,000 images in the 

original dataset [11]. The subset also has a testing set of 

60,000 RGB image patches containing 30,000 cracked 

image patches and 30,000 non-crack image patches 
which is also selected from the original dataset of [11], 

but from a totally different location than that of the 

training set. The idea behind this is to have a testing set 

that contains images taken from a different location from 

that of the training set used for training the networks. 

This location change will introduce variations like 

changes in lightning conditions, nature of cracks and 

surface texture of pavements between the training and 

testing datasets.  This subset 2 (training and testing sets) 

is used for experiment 2 (explained later). 

 

3 Experiments and Discussions 

The experimental evaluations were performed on 

two different hardware settings: one for training the 

network and the other testing the network performance. 

The training was done in a computer node at the High 

performance computing facility (HPC), University of 

Leeds. A total of up to 24 Broadwell E5-2650v4 @ 2.2 

GHz CPU cores with each core given a memory of 3GB 
was used for training the network. The testing was 

performed in a desktop workstation with Intel (R) Xeon 

(R) E5-1630 v4 @ 3.70 GHz CPU with 128GB RAM and 

Nvidia Quodro M4000 GPU. The networks where 

created in Python with Keras deep learning library using 

Tensor flow backend. 

 

Two different experiments were conducted.  

Experiment 1 was conducted to study how the increase in 

depth of networks affects the accuracy of crack detection. 

Experiment 2 studied how the crack detection accuracy 
is affected when the training and testing datasets are 

taken from two different locations. In the experiments, 2 

different networks were used. The second network 

(Network 2) used is same as the base network illustrated 

in Fig 3 in section 2.1. The first network (Network 1) is 

the replica of the second network except that it has not 

got the additional fifth convolutional layer, marked as 

conv-5 in Fig 3. 

 

Fig 5: (a) Sample non-crack images from original dataset 

(b) Sample crack images from original dataset 
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3.1.1 Experiment 1 

The objective of this experiment was to study how 
well the crack detection methods perform when the 

number of layers of the network was increased. In this 

experiment the networks (1 and 2) were trained and 

tested using the subset 1 described in section 2.2.1. The 

results of the experiment are shown in Table 1 and Fig 6. 

The Fig 6 shows the number of True positives (TN) True 

negatives (TN), False positives (FP) and False negatives 

(FN) for networks 1 & 2 respectively. The true positives 

are the samples that are correctly classified as cracks and 

true negatives are samples that are correctly classified as 
non-cracks. Similarly, false positives are the samples that 

are not cracks but wrongly classified as cracks by the 

networks and false negatives are crack samples but 

wrongly classified as non-cracks by the networks. Table 

1 shows the accuracy, precision and recall of the 

networks respectively. The recall can be understood as 

the percent of crack samples that are identified by the 

network out of the total number of cracks in the dataset. 

Whereas precision is the percent of predicted cracks that 

were actually cracks. The accuracy, precision and recall 

are calculated as follows: 

 

Recall =
 TP

TP +  FN
 

 

Precision =
 TP

TP +  FP
 

 

Accuracy =
TP + TN

TP + TN + FP + FN
 

 

 

 

Figure 6: TP, TN, FP, and FN for experiments 1 

      It can be seen that as the number of layers are 
increased the accuracy and recall of the network 

increases. This is mainly because as the networks get 

deeper it learns more and more discriminative features 

from the images that helps the networks to differentiate 

the pavement cracks from non-crack images.  

3.1.2 Experiment 2 

In this experiment the networks (1 and 2) were trained 

and tested using the subset 2 described in section 2.2.2. 

In subset 2 the data distribution of the training dataset 

used for training the networks is different from the testing 

dataset. So the networks are tested on a totally different 
dataset taken from a different location from that of the 

training dataset. The objective of this experiment was to 

study how well the crack detection methods perform 

when the location of the training and testing sets are 

different. The results are shown in Table 1 and Figure 7. 

As in experiment 1, the Fig 7 shows the number of True 

positives (TN) True negatives (TN), False positives (FP) 

and False negatives (FN) for networks 1 and 2 

respectively 1 and 2 respectively. The Table 1 shows the 

accuracy, precision and recall of the networks. 

 

 

 

Figure 7: TP, TN, FP, and FN for experiments 

 

 
Table 1: Accuracy, Precision and Recall of CNNs when tested on a dataset taken from a different location
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Network 1 

(4 convolutional layers) 

Network 2 

(5 convolutional layers) 

When tested on 
the random 

dataset  

( Experiment 1) 

When tested on dataset 
taken from a different 

location to that of training 

dataset 

( Experiment 2) 

When tested on 
the random 

dataset 

( Experiment 1) 

When tested on dataset taken 
from a different location to 

that of training dataset 

( Experiment 2) 

Accuracy 
90.2% 87.9% 91.3% 90.1% 

Precision 
91.9% 81.8% 90.7% 85.6% 

Recall 
88.2% 97.5% 92.0% 96.4% 

 

It can be seen that as the performance of the 

networks degrade as the location varies. This is mainly 

because of the variation in the background conditions 

from which the images in training datasets and testing 

datasets are collected. It can be inferred from the 

observations that the deep networks trained on training 
images from one location, e.g., London, may not work 

well when tested on images from another location, e.g., 

Leeds.  

Finally in Fig 8 we illustrate a few samples of TN, 

TP, FP and FN cases for Network 2 in experiment 1.  

 

 

 

      
       (a: False Negatives) 

 

         
(b: False Positives) 

 

   
(c: True Negatives) 

 

   
(d: True Positives) 

 

It can be seen from Fig 8 that the samples which the 

network predicted wrongly (False Negatives and False 

Positives) were very ambiguous visually. Even a trained 

human worker might get them wrong during a visual 

inspection. The next stage of deep learning based 
pavement crack detection lies in training the deep 

networks in such a way that it can correctly classify even 

such ambiguous samples.   

4 Conclusions  

The studies presented in this paper shows that an 

increase in the depth of the deep networks leads to better 

performances in terms of accuracy and recall. The deeper 
the networks are, the more it learns about detecting 

cracks although a threshold has not been defined yet. 

Also it could be concluded that the network trained 

on images taken from a particular location do not perform 

well when tested on images taken from another location. 

Therefore, location variance is a very important hurdle 

that has to be tackled for implementing a universal 

automatic crack detection system using computer vision 

techniques. 
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