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Abstract 

The equipment used in earthmoving operations 

poses a significant threat to the safety of the 

equipment operator and construction workers due to 

the operator’s inherently poor visibility of the 

surrounding environment. This study proposes a 

method of automated detection of nearby obstacles 

with monocular vision, with the goal of protecting 

the equipment operator and construction workers 

from potentially dangerous situations, such as 

collisions between earthmoving equipment and 

obstacles within a certain proximity. The proposed 

method consists of three steps: 1) correction of lens 

distortion prior to further processing, 2) shadow 

removal, and 3) detection of nearby obstacles with a 

predefined height level via perspective 

transformations. The proposed method was tested on 

video streams acquired from a camera installed on 

the side of the equipment body while an excavator 

executed excavating and moving tasks. The 

experimental results showed that the proposed 

method can provide the equipment operator with 

information about nearby obstacles during the 

excavator’s manipulation and transportation. It is 

expected that the proposed method can be 

implemented in rearview monitoring systems and 

surrounding view monitoring systems for operator 

assistance and to achieve active safety. 
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1 Introduction 

Visibility is important for securing safety during 

operation of the construction equipment. Since humans 

depend on visual sense for 90% of the information 

received through sensory organs, if an equipment 

operator fails to secure sufficient visibility, this could 

cause serious casualties and reduce task efficiency. As 

demand for a higher visibility standard grows in the 

construction industry, the International Organization for 

Standardization (ISO) has developed a number of 

international standards for construction machinery (e.g., 

ISO 5006: 2006) [1]. Installing multiple mirrors can be 

helpful in ensuring visibility, according to the standard, 

but it has fundamental limitations in that the equipment 

operator must check multiple mirrors from time to time. 

To improve the visibility of the surrounding 

environment, earthmoving equipment manufacturers 

have adopted a rearview monitoring system, or a system 

that monitors further around the equipment by installing 

camera(s) on the rear or on every side (e.g., the rear, left, 

right, and front) of the equipment body and displaying 

the views on the operator’s monitor. Although these 

systems provide improved visibility of the surrounding 

environment, detecting potential collisions between 

earthmoving equipment and obstacles (e.g., construction 

workers, facilities, and others) is still cognitively 

effortful and restricted by the operator’s limited 

cognitive capacity while executing tasks. Therefore, it is 

necessary to develop a method to rapidly provide 

information about 3D environments from the images 

acquired from cameras installed on each side, which is 

important and helpful in assisting operators. 

Modeling of the surrounding environment is highly 

desirable for construction automation. However, it is a 

difficult task to effectively and rapidly represent 

surroundings due to the complexity of construction 

workspaces and rapid variation in objects’ locations. 

Toward this end, various 3D imaging sensors are being 

developed and tested for 3D modeling. Some 

researchers have proposed the use of two 2D laser 

rangefinders to enhance safety [2]. In order to acquire 

consistent 3D information with such sensors, multiple 

consequent acquisitions are performed and merged. The 

data acquisition is therefore time-consuming. 3D laser 

scanners can provide high-resolution 3D information 

with large field of view. However, because it takes tens 

of seconds to scan once, it is not suitable for modeling 

the dynamic environment. 
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Laser-based flash laser distance and ranging 

(LADAR) and vision-based stereovision systems are 

state-of-the-art developments among 3D imaging 

sensors. Researchers (e.g., [3–5]) have adopted flash 

LADAR to represent the work environment. This flash 

LADAR can acquire 3D information about the 

environment, which may correspond to obstacles at 30 

frames per second [6]. Although previous studies have 

validated that flash LADAR could be used to provide 

3D information in construction sites, the resolution of 

3D information is limited, and the information captured 

are contaminated by noise, especially in outdoor 

environments [7]. Stereovision systems can also acquire 

3D information with two or more cameras. Researchers 

(e.g., [8]) have adopted stereovision systems to 

represent the work environment. Although stereovision 

can provide texture and color information, not just 3D 

information, the applicability is limited in environments 

with few textures. Also, maximum depth and the 

precision of 3D information are limited. 

In recent years, researchers working on autonomous 

robot navigation have been interested in representing 

the surrounding environment of a robot by relying on 

monocular camera inputs only (e.g., [9]). It has been 

proven that the monocular vision-based approach 

enables obstacle detection and environment 

representation at short range under certain 

environmental assumptions. In particular, it is possible 

to create a robust obstacle detector for low-speed 

maneuvers using monocular vision algorithms only in 

limited conditions. Earthmoving equipment needs to 

comply with speeds below 20 km/h within construction 

sites. With this point in mind, this study proposes a 

method for modeling the surrounding environment 

based on information from a single camera attached to 

the rear or all sides of the earthmoving equipment body. 

The aim of this study is to propose an automated 

method for detecting nearby obstacles based on the use 

of a single camera, with the goal of protecting the 

equipment operator and construction workers from 

potentially dangerous situations, such as collisions 

between earthmoving equipment and obstacles within a 

certain proximity. This paper is organized as follows: in 

Section 2, the proposed approach is presented. Section 3 

describes the proposed method in detail with 

experimental results. Finally, conclusions and 

suggestions for future research are given in Section 4. 

2 Detection of Nearby Obstacles with 

Monocular Vision 

In order to avoid collision, an equipment operator 

needs to pay attention to nearby areas with obstacles in 

meaningful dimensions while manipulating the 

equipment in a complex environment. Although it has 

been recognized in general that 3D representation is 

possible through more than two vision systems, the 

following prior information and assumptions allow 

distance estimation like that in the human vision 

between the camera and obstacles in 3D representation. 

Assume that the earthmoving equipment is lying on a 

plane and the height of the camera origin and azimuth 

(in degrees) are known. Then, the range of height of the 

obstacles and the range of distance between the camera 

origin and the obstacles are limited. Through projection 

transformation, we can obtain a point in 3D space and 

convert it to a 2D point in the image in pixels along with 

an optional z-value corresponding to the depth of each 

pixel. 

In the case of an excavator, the lower caterpillar and 

the upper equipment body rotate separately around the 

axis of rotation. Figure 1 illustrates a top view of how 

the equipment body (represented by the yellow-orange 

color) at the top rotates while the caterpillar 

(represented by in black) is stationary. The dimensions 

of the caterpillar and equipment body were illustrated 

based on a 21-ton excavator. There are two areas: the 

area inside the inner circle and the area between the 

inner circle and the outer circle. The outer circle is a 12-

meter circle around. The outer circle shows the extent to 

which obstacles should be detected if intersecting 

obstacles are set within 3 m. The inner circle represents 

the circle around the rotary long axis of the equipment 

body. This study focuses on obstacles within this outer 

circle by considering the speed of earthmoving 

equipment at the construction site. Then, for the purpose 

of preventing collisions with static or moving obstacles 

when the upper body of the equipment rotates, only 

objects with a height of 1 m or more are regarded as 

obstacles. 

 

Figure 1. Example of the body rotation of the excavator 

from a top view 
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Unstructured environments are usually more 

complex than structured environment and have fewer 

features, which are obviously distinguishable [10]. Also, 

it is difficult to detect obstacles directly as obstacles 

have often irregular shapes, especially in work 

environment. Thus, this study proposes a different 

method of detecting obstacles by discarding irrelevant 

areas from the environment that are outside the specific 

range of the camera. The proposed method performs 

detection of nearby obstacles in a process, which is 

divided into three key steps presented in detail in the 

following subsections. 

3 Methodology 

3.1 Unwarping 

Commercial rearview monitoring systems and 

surrounding view monitoring systems use wide-angle 

lenses in order to cover a larger area with fewer cameras. 

Although wide-angle lenses provide a large field of 

view, the images produced are severely distorted. Hence, 

a process called image unwarping is necessary to correct 

severe distortion of the images produced by the wide-

angle lens. Image unwarping is used for obtaining a 

wide-angle view without strong aberration by both 

correcting lens distortion [11]. In order to exploit the 

large field of view of wide-angle lenses by correcting 

the lens distortion, this study adapted an unwarping 

approach proposed in Schulz et al. [12]. By generating 

the number of virtual views and merging them in a 

single image, we can re-project the original wide-angle 

image onto a semicylindrical surface. For this process, 

the semicylindrical surface is obtained for the camera 

with wide-angle lenses by exploiting the camera’s 

extrinsic, intrinsic and distortion parameters [13]). 

3.2 Shadow Removal 

The outdoor environment in which the earthmoving 

equipment operates is affected by shadows such as those 

of obstacles, equipment, or surrounding objects or 

terrain features. Since image features such as color, 

texture, and intensity are used in the segmentation, the 

shadow is considered an irrelevant region because it is 

likely to be mistaken for the candidates of the obstacle. 

For this reason, once the correction of lens distortion is 

done prior to further processing, detection and removal 

of shadows is done to minimize the effect of shadows in 

the latter process. This study adapted the shadow 

detection and image restoration methods proposed by 

Sarabandi et al. [14] and Arévalo and Ambrosio [15]. In 

the study by Sarabandi et al. [15], color space 

transformation from red, green, and blue to c1c2c3 was 

proposed since it shows the best results for detecting 

shadow regions in color images [16;14]. After color 

space transformation, a shadow region is defined as an 

area inside of the boundary that has a pixel value 

different from its surroundings. Therefore, the local 

variance of each pixel and its neighborhood is measured 

using the c3 component to identify the shadow boundary 

by applying a 3-by-3 filter. The high variance value is 

the boundary between the shadow and non-shadow 

regions. After identifying this boundary, the shadow 

region can be detected by classifying pixels inside of the 

boundary as shadows. However, this method is limited 

for the following reasons. In an outdoor environment, c3 

may be noisy, which could cause a misleading finding 

of the boundary between the shadow and non-shadow 

regions. Also, the local variance becomes unstable for 

low saturation values (i.e. grey levels), which could also 

cause a misleading finding of the boundary between the 

shadow and non-shadow region (e.g., [15]). To 

overcome these limitations, Arevalo et al. [15] proposed 

an additional process to minimize the noise in c3 and 

check the saturation and intensity values of pixels. 

Based on the shadow detection method proposed by 

Sarabandi et al. [14], this study adapted the advanced 

shadow detection method proposed by Arévalo and 

Ambrosio [15] and the linear-correlation method 

proposed by Sarabandi et al. [14] for image restoration. 

3.3 Detection of Nearby Obstacles 

3.3.1 Image segmentation 

The ability to avoid obstacles depends on the image 

segmentation result, which is the process of separating 

obstacle candidates from the background. For this 

purpose, a rapid online segmentation method is 

proposed. Using the compact color and texture 

descriptor proposed by Blas et al. [17], this study 

integrates an intensity feature to reduce the effects of 

lighting changes during the segmentation process. In 

addition, a two-stage unsupervised online learning 

process is proposed. The integrated descriptors are first 

computed for each pixel and then clustered to find a 

small set of vectors or textons as the basis [18] for 

characterizing scene textures. In this process, each pixel 

is assigned to the closest texton. Then, the pixel 

classification result performed in the first step is refined 

by clustering the histograms of a small set of vectors 

over a window to find more coherent regions. The k-

means clustering algorithm [19,20] was employed for 

the clustering. 

3.3.2 Region of interest classification 

For this purpose, the origins are defined for two 

different virtual cameras whose image plane are 

horizontal and aligned with the earth cardinal directions. 

The first virtual camera’s origin is located in the bird’s-
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eye position, and the second virtual camera’s origin is 

located below the original camera’s origin. The first 

camera’s field of view is looking at the floor vertically, 

and the second camera’s field of view is parallel to the 

ground. The image plane of each virtual camera is 

projected onto the inertial planes using an adapted 

geometric method based on the concept of inverse 

perspective transformation. 

Based on the change in the pixels of the segmented 

region from the original image to the two different 

virtual images, the proposed method distinguishes 

whether an object has height or not and then estimates 

the maximum height difference. The maximum 

difference of the height value between the ground and 

each transformed pixel within the obstacle is defined as 

the region’s height, which is used to classify whether 

the region of interest has a height of at least 1 m. 

4 Results and Discussion 

The steps from the correction of lens distortion prior 

to further processing, shadow removal, and detection of 

nearby obstacles with a predefined height level via 

perspective transformations were applied on video 

streams acquired from a camera installed on the side of 

the equipment body while an excavator executed 

excavating and moving tasks. Figure 2 shows an 

example of an original image acquired using a wide-

angle lens with a 135◦ horizontal field of view. As 

shown in the figure, it can be seen that the worker 

standing in the left area is distorted as if he were tilted 

compared to the worker in the middle. 

 

Figure 2. Example of an original wide-angle image 

 

Figure 3 shows an example of the resulted unwarped 

image. In Figures 2 and 3(a), it can be seen that the 

distortion of the leftmost worker and the second worker 

from the left has been corrected. The adapted shadow 

removal process was tested with the unwarped image in 

Figure 3(a). Detected shadow regions were shown in 

white pixels in Figure 3(b). 

 
(a) 

 
(b) 

Figure 3. (a) Unwarped image of (b) Shadow detection 

result 

 

Once the shadow regions are detected, the brightness 

of shadow pixels to the first order can be restored by a 

linear function. Figure 4 illustrates the image 

segmentation result. In the image, the dotted white 

dotted line represents the distance (5 m) from the 

camera. For this purpose, the segmentation is performed 

from the bottom, and the area above the white dotted 

line will no longer be segmented, except the areas 

segmented with the pixels below the white dotted line. 

This is also effective in reducing the time required for 

segmentation of unnecessary areas, such as blue areas. 

Once the image segmentation is performed, the area of 

the magenta color separated from the ground or terrain 

where the equipment is placed is excluded from the 

candidate of obstacles. Then, there are four candidates 

of obstacles, as shown in Figure 4. 

 

Figure 4. Image segmentation result 
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Among the regions of the candidates for obstacles, 

the regions that are determined to have height, whose 

maximum height difference was 1 m or more, and that 

were identified as obstacles were marked by boxes in 

Figure 5. 

 

Figure 5. Region of interest classification result 

5 Conclusion 

This study presented a method for automated 

detection of nearby objects with monocular vision, with 

the goal of protecting the equipment operator and 

construction workers from potentially dangerous 

situations, such as collisions between earthmoving 

equipment and obstacles within a certain proximity. The 

experimental results showed that the proposed method 

could provide the equipment operator with information 

about nearby obstacles during the excavator’s 

manipulation and transportation. It is expected that the 

proposed method could be implemented in rearview 

monitoring systems and surrounding view monitoring 

systems for operator assistance and to achieve active 

safety. Future works will focus on the estimation of 

collision-free area between earthmoving equipment and 

the obstacles. In addiition, obstacle detection is 

performed with planar ground assumption. Future work 

focuses on developing a method for detection of 

obstacles with no planar ground assumption by 

introducing an inertial sensor for acquiring 3D 

orientation and sensor network. 
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