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Abstract –  

Estimating the productivity of construction 

operations is one of the most challenging tasks for 

project managers. Therefore, the construction 

industry always looks toward new advancements for 

automating this process. New automated methods 

for productivity estimation aim to detect the types, 

locations, and activities of construction equipment 

based on sensory data. Computer Vision (CV) is one 

of the most promising automated methods and it 

provides an affordable opportunity for estimating 

the productivity since it only requires regular 

surveillance cameras for data collection, which are 

available on many construction sites. One of the 

widely used CV methods for classifying equipment is 

Histogram of Oriented Gradient (HOG). 

Additionally, Bag of Words (BoWs) and Local 

Binary Pattern (LBP) are other types of descriptors 

widely used for the object classification. However, 

these methods reduce the dimensions of the image 

features to train the classifiers for object detection, 

which may reduce the reliability of the results. 

Convolutional Neural Networks (CNN), which are a 

special type of Artificial Neural Networks (ANN) 

with deeper layer structure, provide a better 

approach for object detection compared to the 

conventional methods due to their deeper 

understanding of the object features. Furthermore, 

the advancements in Graphical Processing Units 

(GPU) made this computationally heavy method 

more applicable in practice. This paper aims to 

evaluate the performance of CNN for detecting 

equipment on construction sites. Several 

configurations of CNN are trained for detecting 

multiple equipment (i.e. dump trucks, excavators 

and loaders). The results of these configurations are 

compared with those of conventional detectors. 
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1 Introduction 

Estimating the productivity of construction 

operations is one of the main concerns of the contractors 

since it is tied to the schedule and cost of the projects. 

The construction industry, with the annual revenues of 

more than $110 billion in Canada (Statistics Canada, 

2016), is always eager to apply new methods and 

technologies for making the projects more cost-effective 

while increasing the safety on the sites. Currently, using 

the Global Positioning System (GPS) is the common 

practice in monitoring the location of the equipment (e.g. 

dump trucks, loaders, and excavators.). However, it is 

difficult to install a GPS receiver on each piece of 

equipment. On the other side, the availability of the 

surveillance cameras on many construction sites opens 

the opportunity for applying Computer Vision (CV) 

based methods to monitor the productivity of the 

equipment in addition to monitoring the safety and 

security of the sites.  

Many CV-based methods have been proposed for 

monitoring the construction equipment, and each 

method has its benefits and drawbacks. Convolutional 

Neural Network (CNN) based methods are an emerging 

practice within the domain of CV. Thanks to the fast-

growing advancement of Graphical Processing Units 

(GPUs), the applications of CNN are increasing within 

different engineering domains.  

This paper aims to apply two comparative analyses. 

The first analysis compares several conventional CV-

based classification methods with CNN-based methods 

for the classification of dump trucks, loaders, and 

excavators. In the second analysis, two CNN-based 

methods are compared using different training and 
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testing datasets. These comparisons aim to provide a 

better understanding of the opportunities of using the 

CNN-based methods in the context of construction 

operations. 

2 Literature Review 

The applications of CV are growing fast for 

monitoring construction projects including construction 

equipment classification, detection and tracking. Among 

these applications, equipment classification is an 

important task for monitoring the resources on 

construction sites since tracking without recognizing the 

type of the tracked object does not provide enough 

information for decision making. Moreover, the main 

step in CV-based object detectors is the classification. 

Whether using background subtraction methods or 

sliding windows, it is mandatory to classify the 

foreground segments of the images or to classify each 

sliding window passing over an image to localize the 

target object within the image or video frame. The 

classifier can be either binary for each object or a multi-

class classifier. 

2.1 CV-based Methods in Construction  

There are many methods developed for the 

recognition of workers and construction equipment. Zou 

and Kim (2007) proposed using Hue, Saturation, and 

Value (HSV) color space to track the equipment. 

Detecting the workers through the color of their 

hardhats was studied by Weerasinghe and Ruwanpura 

(2009). Azar and McCabe (2012b) investigated the 

applicability of fusing HOG and Haar-Like features for 

detecting the equipment. Moreover, they proposed 

applying a part-based model for detecting excavators  

(Azar & McCabe, 2012a). The idea of part-based 

models originally came from the research of 

Felzenszwalb et al. (2010). Memarzadeh et al. (2013) 

showed that integrating HOG features with Histogram 

of Color (HOC) improved the detection accuracy 

compared to relying only on HOG features. Soltani et al. 

(2016) proposed using a large dataset of the synthetic 

images for training HOG detectors. 

On the other hand, there are a number of studies that 

focused more on the equipment classification. Basically, 

the moving objects on the videos are separated in each 

frame using background subtraction methods. Then the 

blobs or foregrounds are fed to the classifiers to 

determine the class that the foreground belongs to. Azar 

and McCabe (2011) trained eight classifiers from 

different angles around a dump truck using HOG 

features. The moving objects in the video were 

segmented after subtracting the background. They fed 

each segment to their classifiers to find whether it is a 

dump truck or not. 

Chi and Caldas (2011) selected four types of feature for 

classification, such as aspect ratio, height-normalized 

area size, percentage of occupancy of the bounding box, 

and average gray-scaled color of the area. They 

compared the normal Bayes and neural network 

classifiers after training the aforementioned features for 

each classifier. 

Park and Brilakis (2012a) proposed a two-stage 

classification approach after subtracting the background. 

In the first stage, they applied the classifiers based on 

Haar-Like features trained with Adaboosting. In the 

second step, they applied a Support Vector Machine 

(SVM) based classifier trained by Eigen-images on the 

candidate identified in the previous classification step. 

In another study, Park and Brilakis (2012b) trained 

HOG features using a SVM classifier to find moving 

people on the site. Then they applied k-NN classifier 

trained by color histogram to differentiate workers from 

other people. 

Unfortunately, there is no benchmark dataset similar to 

CIFAR 10 or 100 (Krizhevsky, 2009), ImageNet (Deng, 

et al., 2009), or Caltech 101 or 256 (Fei-Fei.et al., 2004) 

within the construction domain to evaluate and compare 

the CV-based methods for the construction applications 

in a fair manner. 

2.2 Recent Progress of CV-based Methods 

While many industries are adopting CV-based 

methods for their specialized applications, these 

methods are advancing rapidly. Therefore, it is 

necessary for the researchers in the construction domain 

to follow the recent progress in these methods and to 

take advantage of them. 

2.2.1 Deep Learners for CV 

According to the review done by Schmidhuber 

(2014), excellent results were achieved in image 

classification using deep learning methods. Guo et al. 

(2015) represents these methods under four categories: 

CNN-based, Restricted Boltzmann Machines (RBM) 

based, Autoencoder-based, and Sparse Coding-based 

Methods. CNN have a hierarchy of convolutional layers, 

pooling layers, and fully connected layers. Filters or 

kernels play the main role by convolving the whole 

image to generate the feature maps. Pooling maps 

reduce the dimensions of the feature maps, and fully-

connected layers convert the 2D feature maps to 1D 

feature vector. RBMs are generative stochastic neural 

networks (Hinton & Sejnowski, 1986) that apply 

restrictions to make the training algorithms more 

efficient. Autoencoders are another category within the 

deep learning domain, and they learn the efficient 

encodings for the imput data. These encodings can be 
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further used for reducing the dimentionality of the data 

(Hinton & Salakhutdinov, 2006). Finally, Sparse 

Coding is the learning process of an over-complete set 

of basic functions for describing the input data 

(Olshausen & Field, 1997). 

Moving to the applications of the deep learning in 

the CV domain, the aforementioned methods, especially 

CNN methods, can be used under five categories 

defined by Guo et al. (2015) including: (1) Image 

Classification, (2) Object Detection, (3) Image Retrieval, 

(4), Semantic Segmentation, and (5) Human Pose 

Estimation. Since this research aims to explore the 

capabilities of deep learning for classifying construction 

equipment, the literature regarding the CNN is 

discussed.  

Among enormous and fast growing number of deep 

neural network models, there are couple of models that 

outperformed the others over the last five years 

(Canziani et al., 2016). These widely used models 

include, but are not limited to, AlexNet (Krizhevsky et 

al., 2012), Network In Network (NIN) proposed by Lin 

et al. (2013), GoogLeNet (Szegedy et al., 2015), 

ResNet-18, -34, -50, and -101 (He et al., 2016), VGG-

16 and -19 (Simonyan & Zisserman, 2014), and 

Inception-v3 (Szegedy et al., 2016). 

2.2.2 Architecture and Parameters Analysis of 

CNN for CV 

Canziani et al. (2016) analysed and compared the 

aforementioned models not only from the accuracy 

point of view, but also considering the computation cost 

and efficiency of the models. As shown in Figure 1, 

Inception-v3 has the highest top-1 accuracy. Selecting 

the the best architecture only considering the accuracy 

may ignore the applicability of a model by not 

considering its computation load. For instance, although 

VGG-19 provides an accuracy of higher than 70%, its 

operations required for a single forward pass are 

dramatically higher than ResNet-18 or -34, which have 

similar accuracies to VGG. Therefore, Canziani et al. 

(2016) proposed comparing the models based on their 

information density (accuracy per parameters). This 

metric provides the capacity of a specific architecture to 

better utilise its parametric space. 
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Figure 1 Current deep neural network models comparison, adapted from (Canziani et al., 2016) 

 

Finally, they came up with the conclusion that 

GoogLeNet has the best architecture in terms of 

parameters’ space utilisation. 

Reviewing the recommendtions regarding the design 

of CNN for CV applications shows that when the 

network is trained using grayscale images, it can focus 

more on the shape (i.e. corners and edges) rather than 

the color. Also, it can be interpreted that if the testing 
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images include variations of the color, the training 

images should also include the corresponding color 

variations (Zheng et al., 2015).  

Mishkin et al. (2016) studied the impact of a range 

of choices for activation function, pooling, learning rate 

policy, image pre-processing (i.e. different color spaces 

and grayscale images), batch normalization, classifier 

design, batch size and learning rate, network width (e.g. 

changing the number of filters), dataset size and noisy 

labels, and bias in convolution layers. The bottom line 

of their research was the suggestion to use Red, Green, 

Blue (RGB) color space, the linear learning rate decay 

policy, and mini-batch size around 128 or 256. Also, 

they stated that having a larger dataset increases the 

accuracy but it also increases the computation load 

dramatically. Furthermore, the cleanliness of the data 

seems to be more important than the size of the dataset. 

While collecting a large dataset and labeling the 

images are time-consuming, Peng et al. (2015) proposed 

generating the synthetic data from 3D models for 

training the deep learners. They had a prior study on the 

applicability of synthetic images for classification based 

on HOG features using SVM (Sun & Saenko, 2014). 

They explored the minimum Average Precision (mAP) 

of the CNN-based classifiers while using real images, 

virtual images with uniform gray texture (V-GRAY), 

and virtual images with real texture (V-TX). The results 

show that V-TX had the best performance while V-

GRAY was the worst one. 

3 Scope Definition of Analyses 

One of the goals of this paper is to compare the 

performance of the conventional handmade features 

such as Bags of Words (BoW), Local Binary Pattern 

(LBP), and HOG with CNN-based features. For 

classifying the conventional features, SVM is used 

while for CNN-based features both SVM and ANN are 

applied. Three widely used equipment on construction 

sites are excavators, loaders, and dump trucks, which 

are the focus of this study. 

The first descriptor is used for the comparative 

analysis is BoW or bag of keypoints that use the vector 

quantization of affine invariant descriptors of image 

patches. In the original study, Naïve Bayes and SVM 

classifiers were used because of their simplicity (Csurka 

et al., 2004); however, this paper only implements SVM 

for BoW and all other conventional descriptors. The 

second descriptor, LBP, recognizes certain local binary 

patterns, known as uniform. The  occurrence histogram 

of these patterns is supposed to be very strong in terms 

of texture feature (Ojala et al., 2002). HOG is the next 

descriptor that uses locally normalized histogram of 

gradient orientations features in a dense overlapping 

grid (Dalal & Triggs, 2005). 

Two CNNs, AlexNet and VGG-f (Chatfield et al., 

2014) are considered in the first analysis, because of 

their relatively simple archituctures compared to the 

very deep and complex networks such as Inception-v3 

or ResNet-101. AlexNet is used in this study folowing 

two approaches. In the first approach, one of the layers 

of the pretrained AlexNet is used for extracting the 

features of the training dataset and then the features are 

fed to SVM for training the classifiers and it is shown as 

AlexNet-SVM in Table 2. In the second approach, the 

architecture of AlexNet is used for creating a new 

network but for classifying three classes instead of its 

original 1000 classes. The second approach is also 

repeated for VGG-f to train a network with the similar 

architecture but for three classes. 

Moreover, the performance of the construction 

equipment classification is evaluated within the domain 

of CNN. Various configurations and datasets are used to 

reach to a conclusion for classifying the construction 

equipment. Multiple training and testing datasets of real, 

synthetic, and mixed real-synthetic images are used with 

different numbers of images in each dataset. AlexNet is 

used independently and in collaboration with SVM as 

described above. 

4 Implementation and Comparative 

Results 

The implementation was done in Matlab 9.1  

(Mathworks, 2016) on a mobile station with Intel i7 

Quad-Core processor, 32 gigabytes Random-Access 

Memory (RAM), and NVIDIA Quadro K2000M 

graphics card. Five datasets were used for both training 

and testing phases as shown in Table 1. 

4.1 Conventional versus CNN-based Methods 

 In this test, five main types of classifiers were 

investigated: BoW, LBP, and HOG integrated with 

SVM as the conventional methods and AlexNet 

integrated with SVM, independent AlexNet, and 

independent VGG-f as CNN-based methods. As hown 

in Table 2, one configuration with 500 clusters was used 

for extracting BoW features while four cell sizes for 

LBP features and six cell sizes for HOG features were 

tested. Three layers were selected from AlexNet 

considering the available computation resources in this 

research. Two layers were close to the end of the 

network and one layer was near the starting border of 

the network. Selecting the features from both end of the 

network helps to compare the effectiveness of the 

feature at different level of the CNN architecture. The 

features obtained from three different layers of the 

original AlexNet network were used separately for 

training the SVM classifiers. Due to the limitation of the 
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computation capacity, only the first convolutional layer 

was tested while the other two layers were from the 

fully connected layers at the end of the network 

structure. The last two classifiers had similar structure 

to AlexNet and VGG-f, respectively, except the last 

layer (classification layer), which has three classes 

instead of 1000 classes in the original model. Also, in 

another scenario, AlexNet and VGG-f were fed and 

tested by gray scale images. For training each of the 

aforementioned classifier, the datasets of synthetic 

images with 6,000 images (first row) shown in Table 1 

were used while for testing the dataset of real images 

was used with 1,169 images was used (second row). 

Due to space limitation, only the accuracies of 

correct detections for each class from the confusion 

matrix are shown in Table 2 in addition to the average 

accuracy of the all classes. The averages accuracy of 

BoW was 38%, while the best achieved average 

accuracies for LBP and HOG were 41% and 47%, 

respectively. The results show that all the conventional 

classifiers had more difficulties for classifying the 

loaders. Investigating the poor accuracies for the loader 

shows that the 3D model of the loader used for creating 

the synthetic images looks similar to a brand new loader 

which has usually a yellow bucket. However, the bucket 

of the loader looks very dark close to black or dark 

brown color and the bucket of loader includes a large 

portion of its appearance. Opposite to HOG-based 

method, it is highly possible that CNN can be sensitive 

to the color of the object during training phase. On the 

other hand, the best average accuracies of AlexNet-

SVM, AlexNet, and VGG-f were 83%, 78%, and 68%, 

respectively. It can be concluded from this analysis that 

CNN-based methods outperformed the conventional 

methods.  

Table 1 Image Datasets Specifications 

 Excavator Loader Truck Total 

Synthetic 2,000 2,000 2,000 6,000 

Real 555 267 347 1,169 

Real 100 100 100 300 

M
ix

e
d

 

Real 555 267 347 
2,338 

Synthetic 555 267 347 

M
ix

e
d

 

Real 100 100 100 
600 

Synthetic 100 100 100 

4.2 Performance Evaluation of CNN-based 

Method on Different Datasets 

At this stage, the best two groups of classfiers 

(trained for three classes of equipment) resulting from 

the previous test in Section 4.1 were used for a more 

detailed analysis and testing. The two groups are the 

AlexNet-SVM classifiers with ‘fc7’ layer and the 

independent AlexNet classifiers. 

The purpose of this test is to find how the accuracy 

of each classifier can be be affected using the five 

datasets shown in Table 1. There are two different 

datasets of real images, one with 1,169 images and the 

other with a small number of images (300 in total) to 

find the impact of the number of the training images. 

Also, two more datasets are prepared by adding the 

synthetic images with the same number of the real 

images in each of two previous datasets. The advantage 

of the synthetic images is that they are taken from all 

views around the equipment while the real images are 

mostly captured from low heights and views. A sample 

of real and synthetic images are shown in Figure 2 One 

the other hand, the synthetic images may look artificial 

and that may have negative effects on the CNN-based 

classifiers compared to conventional methods that did 

not show such effects on the accuracy (Soltani et al., 

2016). Therefore, using the mixed datasets can evaluate 

the generality of the classifiers on different brands, 

colors, and views of the equipment.  

Twenty scenarios are created and tested, which are 

shown in Table 3. Starting with AlexNet-SVM 

classifiers, the results of the classifiers trained by 

synthetic images and tested on real images are 83% and 

86%. The accuracy achieved by classifying the dataset 

with smaller number of images shows better 

performance as expected. In the next scenarios, the 

larger dataset of the real images was used for training 

and the smaller datasets of real and mixed images were 

classified. The results show that adding synthetic 

images from various views reduces the accuracy. By 

using the two larger datasets of mixed images for the 

training, the accuracies were improved for both 

previousely tested datasets. In the next comparison, the 

smaller dataset of real images was used to mimic the 

situations where there is a very limited number of 

available training images. This classifier is applied on 

two larger datasets of real and mixed images and the 

accuracies dropped significantly. In the last two 

scenarios, the smaller dataset of the mixed images was 

used for training and applied on the larger datasets of 

real and mixed images. It is clear from this test that we 

can improve the quality of training (and the resulting 

accuracy) by adding synthetic images to the training 

dataset when the number of real images is small. 

In the next test, similar comparisons were repeated 

for evaluating the independent AlexNet CNN. The trend 

of the results is close to the previouse test except in the 

scenario where the larger dataset of real images is used 

for training and applied on the smaller datasets of real 

and mixed images. Opposite to the AlexNet-SVM 

classifier, the independent AlexNet outperfomed on the 

smaller dataset of the mixed images compared to the 

smaller dataset of the realimages. Additionally, using 
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the larger dataset of mixed images shows its maximum 

performance on the smaller datasets of the real and 

mixed images. However, achieving the accuracy of 

100% does not mean that this classifier is able to reach 

the same accuracy on the larger datasets and it simply 

proves that adding synthetic images to real images 

during the training can improve the performance of the 

AlexNet classifier. 

 

Real Images Synthetic Images 

  

  

  

Figure 2 Sample real and synthetic images 

5 Conclusion 

Reviewing the literature showed that while the 

applications of CNN-based methods are growing very 

fast, the construction industry is lagging in taking 

advantage of these methods. Therefore, this paper 

investigated the applicability of CNN-based methods 

while comparing them with the conventional descriptors. 

In the first analysis, BoW, LBP, HOG, AlexNet 

independently and integrated with SVM, and VGG-f 

networks were investigated. CNN-based methods 

clearly outperformed the conventional methods. In the 

second test, AlexNet and AlexNet-SVM were compared 

using different image datasets including real, synthetic, 

and mixture of real and synthetic images with different 

number of images in the training and testing datasets. 

The results show that it is better to add synthetic images 

to the real images for the training of the classifiers, 

especially when there is limited number of available real 

images. Including the synthetic images to the real 

images helps the classifier consider various views of the 

target objects which are not available in the real image 

dataset. 

On the other hand, training and applying CNN-based 

requires a very powerful computer configuration, 

especially when developing a very deep network is 

required. It is recommended to include more classes of 

the equipment in the future. Moreover, investigating the 

performance of CNN-based object detectors for 

localizing the equipment is the next step. 
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Table 2 Results of comparative analysis between conventional and CNN-based classifiers 

Method 
Size of 

Images 

Additional 

Information 

Accuracy (%) 

E
x

ca
v

at
o

r 

L
o

ad
er

 

T
ru

ck
 

A
v

er
ag

e 
 

Bag of Words 128×128 500 Clusters 78 3 33 38 

LBP-SVM 

128×128 4×4 Cells 72 3 39 38 

128×128 8×8 Cells 72 5 38 38 

128×128 16×16 Cells 76 5 41 41 

128×128 32×32 Cells 51 10 56 39 

HOG-SVM 

128×128 2×2 Cells 69 1 35 35 

128×128 4×4 Cells 70 1 39 37 

128×128 8×8 Cells 75 3 43 40 

128×128 16×16 Cells 73 5 61 46 

128×128 32×32 Cells 55 21 65 47 

128×128 64×64 Cells 41 45 35 40 

AlexNet-

SVM 

227×227 conv 1 Layer 51 42 60 51 

227×227 fc7 Layer 76 78 93 83 

227×227 fc8 Layer 72 60 96 76 

AlexNet 
227×227 Colored 74 48 99 74 

227×227 Grayscale 95 60 78 78 

VGG-f 
224×224 Colored 70 40 94 68 

224×224 Grayscale 92 10 52 51 

Table 3 Results of comparative analysis on AlexNet-SVM and AlexNet classifiers 

 Training Images Testing Images Accuracy (%) 

Method Type Number Type Number 

E
x

ca
v

at
o

r 

L
o

ad
er

 

T
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ck
 

A
v

er
ag

e 

AlexNet-

SVM 

Synthetic 6,000 Real 1,169 76 78 93 83 

Synthetic 6,000 Real 300 95 83 79 86 

Real 1,169 Real 300 89 100 95 94 

Real 1,169 Mixed 600 94 88 93 91 

Mixed 2,338 Real 300 94 100 96 97 

Mixed 2,338 Mixed 600 97 100 98 98 

Real 300 Real 1,169 54 66 100 73 

Real 300 Mixed 2,338 78 69 97 81 

Mixed 600 Real 1,169 83 90 99 90 

Mixed 600 Mixed 2,338 91 95 99 95 

AlexNet 

Synthetic 6,000 Real 1,169 74 48 99 74 

Synthetic 6,000 Real 300 95 51 97 81 

Real 1,169 Real 300 88 100 95 94 

Real 1,169 Mixed 600 99 94 97 97 

Mixed 2,338 Real 300 100 100 100 100 

Mixed 2,338 Mixed 600 100 100 100 100 

Mixed 600 Real 1,169 77 88 99 88 

Mixed 600 Mixed 2,338 88 94 100 94 

Real 300 Real 1,169 81 67 100 83 

Real 300 Mixed 2,338 100 71 96 89 

 


