
34th International Symposium on Automation and Robotics in Construction (ISARC 2017)

A Cascaded Classifier Approach to Window Detection in
Facade Images

M. Neuhausen, A. Martin, M. Obel, P. Mark and M. König
Ruhr-University, Germany, Bochum

E-mail: marcel.neuhausen@ruhr-uni-bochum.de

Abstract -
A major part of recent developments in civil engineer-

ing in the urban context evolved around building and city
models. Especially for a precise risk assessment of damages
to existing buildings induced by ground movements, accu-
rate models are inevitable. Beside the shape of a building,
the focus is also on components compromising a building’s
stiffness. Particularly, by including wall openings such as
windows into risk analyses, these can be improved to provide
more reliable predictions.
However, most publicly available data sources only provide
simple blockmodels of existing buildings sometimes extended
by roof shapes. As a consequence, any information concern-
ing the windows of a building must be integrated into the
model using other data sources. Whereas numerous ap-
proaches address the refinement of building shapes, their
windows and other components are commonly disregarded.
Although cascaded classifiers already turned out to yield
good results in general and applying them to window detec-
tion seems promising, such approaches are yet insufficient to
reliably extend building models. Drawing on previous find-
ings, we present an approach to window detection in facade
images satisfying the needs of risk assessment analyses. Our
detection system combines a soft cascaded classifier consist-
ing of thresholded Haar-like features with a sliding window
detector extracting image patches for classification. The soft
cascaded design improves the detection rate over previously
made approaches while coincidentally reducing the amount
of required features. Further, we evaluate the effect of a
rectified dataset on the classification results compared to its
counterpart with images taken from varying angles.
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1 Introduction
Models of buildings are indispensable in nowadays civil

engineering in the urban context. For several tasks in ur-
ban planning and inner city construction projects accurate
models of existing buildings are a prerequisite. In particu-
lar, this expresses in risk assessment concerning damages
to buildings induced by ground movements which may

be caused by earthquakes or tunneling projects. Reliable
analyses predicting the risk of damages demand detailed
information about a structure’s stiffness. Beside the pure
shape of a building, risk analyses also consider certain
facade components as they possess more profound infor-
mation about a structure’s condition. Especially the ratio
of wall openings to facade is taken into account since
openings highly impair the stiffness of a structure [9].
However, wall openings are commonly not included in
publicly available 3D building models. Those requested
from land registry offices usually comprise coarse block
models of buildings. Some models may be extended by
simplified roof shapes but in general they lack any fur-
ther detail as shown in figure 1. Except for a few manually
reconstructed buildings, those provided by online map ser-
vices like OpenStreetMaps and Google Earth neither offer
more detailed information. For that reason, such mod-
els have to be enriched with additional information about
wall openings beforehand to satisfy the requirements of
risk analyses.

Figure 1. 3D block model of a group of existing
buildings provided by the land registry office of Düs-
seldorf.

For deriving wall openings from a facade, its windows
qualify best as they commonly account for almost all open-
ings. Nevertheless, a personal inspection of each building
within an urban area or along a tunneling alignment to de-
termine the window-to-facade ratio is time consuming and
expensive. Several approaches towards a computer-aided
detection of windows in facades have already been made.
Many of them rely on assumptions and restrictions to the
buildings’ architecture which make them impractical for
general usage. To detect windows in facades automatically
without any prior knowledge about the investigated build-
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Figure 2. (a) Detected window in non-rectified im-
age. Area of the detection rectangle (red) and the
window are not coincident. (b) Detected window in
rectified image. Nearly coincident areas of detection
rectangle (red) and window.

ing, Ali et al. [4] apply the Viola-Jones framework [15]
to images of building scenes. Despite a stated detection
rate which is insufficient for our purpose, it indicates that
cascaded classifiers yield promising results for window de-
tection tasks. Based on their findings, this paper focuses
on improving the detection rate and the accuracy regarding
the windows area. We substitute the classifier as proposed
by Viola and Jones [15] with a soft cascaded classifier
[7]. This provides better generalization for high variation
of the training set which results in an improved detection
rate and higher precision while coincidentally employing
less features. Apart from that, we keep the original detec-
tion algorithm of the Viola-Jones framework which scans
the entire image since the soft cascaded classifier is even
slightly faster so that there is no need for improvements.
Furthermore, we rectify the facade images before detec-
tion to obtain a more precise congruence of the window
areas with the rectangular detections of our approach (see
fig. 2). Restricting to rectangular windows also eases
the training and classification process and consequently
increases the detection rate.
These improvements increase the quality of the detec-

tions to a satisfactory level in terms of the aforementioned
risk assessment. The results of our window detection sys-
tem as proposed in this paper can, thus, be incorporated
into the building model to facilitate subsequent analyses.

2 Related Work
In recent years, windowdetection in facades has become

prominent in a diversity of research fields. The area of
application ranges from tourist guidance onmobile devices
where buildings are recognized by characteristic window
patterns over 3D city modeling to deformation analysis
[4]. However, in literature window detection is commonly
referred to as a part of building reconstruction.

Awide range of approaches concerning several facets of

building reconstruction have already been made. Most of
them focus on improving the model’s shape disregarding
its components. A survey concerning such approaches by
Brenner [1] focuses on aerial imagery and laser scans as in-
put data. This facilitates data acquisition with appropriate
effort even for entire cities. Information about large struc-
tures like buildings and streets is well extractable which
enables the reconstruction of cities as simple block mod-
els. An advanced reconstruction of a building, especially
by its facade components, is only feasible to a very limited
extent due to the bird’s-eye perspective.

Haala and Kada [10] additionally include approaches
based on terrestrial laser scans into their survey which
provide accurate point clouds of existing buildings from
street level. Beside generating geometry from these mea-
surements [18], this kind of data enables the detection of
certain facade components such as windows by identifying
no-measurement areas in the facade plane [17]. Methods
relying on terrestrial laser scans offer simple ways to detect
windows in facades, but by now such data is not available
regionwide. Albeit the StreetMapper proposed by Barber
et al. [3] eases the acquisition, it is too costly and involves
unreasonable effort.

On the contrary, ground view images of facades are
publicly available from web services like Google Street
View or can easily be gathered even for larger areas. In
preliminary work Neuhausen et al. [8] discuss window de-
tection approaches using street level images. They distin-
guish contemporary approaches by their shared strategies
into three categories: Grammar-based, Image process-
ing, and machine learning. Grammar-based approaches
highly rely on several assumptions to a facade’s appear-
ance and prior knowledge about the architecture and its
composition. Ripperda [11] and Ripperda and Brenner
[12] divide facades into their components by applying a
simple grammar leveraging symmetries and repetitions in
facade images. In contrast, Teboul et al. [13] based their
approach on a detailed shape grammar and combined it
with a model of semantic relationships between certain
facade elements. The definition of a proper set of gram-
mar rules and the modeling of relationships is non-trivial
and requires some expert knowledge about the expected
architecture. Such approaches have to be manually ad-
justed whenever the architectural conditions change. This
results in a limitation of a general application. As gram-
mars allow several decompositions of a building’s facade
the most probable subdivision has to be found by means
of sampling methods or parsing algorithms. This dra-
matically raises the methods’ complexity with the number
of rules in the grammar. By this reason, rule sets have
to be kept small which complicates a detailed modeling.
Similar to grammar-based approaches, image processing
methods also make assumptions about the alignment of
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windows on the facade. Lee and Nevatia [2] presume win-
dows to be aligned in a grid-like manner on the facade as
usually seen at big office buildings. For window detec-
tion they project horizontal and vertical edges of rectified
facade images into histograms. These are then superim-
posed to find window hypotheses, refined in later steps,
at the peaks’ locations. Pursuing this approach, Meixner
et al. [14] found that it provides good results on highly
regular facades but fails as soon as facades become more
complex. Asymmetric patterns of windows as well as
facade extensions like balconies corrupt the reliability of
this method. As the facades’ appearance not only alters be-
tween countries but also between city districts and, more-
over, most facades in the urban area can be expected to
be complex, these approaches will often fail and are, thus,
not universally applicable. To avoid the aforementioned
limitations, windows have to be detected by their inherent
characteristics instead of their relations among each other
or further facade elements. Machine learning algorithms
emerge beneficial as they can be trained to classify win-
dows by image features which are directly linked to these
characteristics. Haugegard et al. [6] emphasize this by
deploying a support vector machine (SVM) as classifier to
identify windows by their edges. The set of features used
for classification, though, has to be chosen manually. A
boosted cascaded classifier as proposed in the Viola-Jones
framework [15] overcomes this by autonomously drawing
those features from a predefined pool which qualify best
for a certain task. Furthermore, these usually outperform
most monolithic classifiers such as SVMs [16]. In their
approach, Ali et al. [4] apply this framework to window
detection and investigate the quality of its detections. The
resulting detection rates are insufficient to reliably estimate
the window-to-facade ratio of a building but, nevertheless,
cascaded classifiers emerge to be promising to further re-
search.
In the following we give an insight into the concept of

our detection system (see sec. 3.1) which is based on these
findings. We outline the classifier used and the detection
algorithm in section 3.2 and section 3.3. In section 4.1 we
compare our system to the approach of Ali et al. [4]. In
further experiments we focus on improving the detection
rate. For this purpose, we contrast the classification system
of the previous experiment with one operating on rectified
facade images (see sec. 4.2). Finally, we conclude our
findings and provide an outlook on further work to be
done in section 5.

3 Proposed Window Detection System
Window detection in facade images is still demanding

and not sufficiently solved yet. The detection proves to
be challenging for multiple reasons. Most of a window
is made of a transparent pane which restricts detection to

window frame. Additionally, windows occur in different
sizes and shapes which further increases the difficulty of
the detection task due to a high variation in the frames’
appearance. Both complicate the manual choice of an ad-
equate set of image features as it is uncertain which sub-
set characterizes the entire class of windows best. While
training, boosted cascaded classifiers choose those features
from a predefined pool which perform best on a certain
dataset. They overcome the issue of a manual selection
if the training dataset is well constructed so that it depicts
high intraclass variation. Moreover, they generally yield
better results than monolithic classifiers. For these rea-
sons, boosted cascaded classifiers seem to be promising
for our window detection system.

3.1 Concept

Since boosted cascaded classifiers proofed to be ad-
vantageous compared to other classification methods, we
build our detection system as outlined in figure 3 on the
approach of Ali et. al [4] which uses the Viola-Jones
framework. Considering their findings, we constrain the
input data to be rectified semi-automatically. That elim-
inates an unnecessary increase in the windows’ variation
since equal windows no longer appear to be different due
to distortion. Nevertheless, the intraclass variety remains
quite high. We substitute the classifier used in the Viola-
Jones framework by the soft cascaded classifier proposed
by Bourdev and Brandt [7] as it is more robust regarding
high variability in the set of positive training samples. Fur-
thermore, this method commonly offers a better detection
rate while relying on less features. In section 3.2 we de-
scribe its functionality in more detail. The soft cascaded
classifier we use in our approach is even slightly faster than
the one applied in the Viola-Jones-framework due to the
lower number of features that have to be evaluated. An op-
timization of the enclosing detection algorithm is therefore
not necessary. We keep the naive sliding window detector
(see sec. 3.3) of the Viola-Jones framework which scans
an image via small subwindows sliding across the entire
image and passes the subjacent image patches to the clas-
sifier. The classifier which is trained on a set of rectified
window samples and random non-windows then obtains
a binary classification for each patch and returns them to
the detector. Positive responses are finally merged where
appropriate and returned as output of our system. Fig-
ure 3 illustrates the described interactions of the detectors’
components.

3.2 Soft Cascaded Classifier

As an improvement over the Viola-Jones framework,
Bourdev and Brandt [7] proposed the soft cascaded classi-
fier approach which also relies on an set of weighted weak
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Figure 3. Concept of the proposed detection system.
Images are rectified and passed to the detector. The
detector cuts out image patches which are classified
by a trained and calibrated cascade. Overlapping
regions of interest (ROIs) of positive classifications
are merged. Resulting ROIs are returned as detected
windows.

classifiers αh(x), where α is the weight and h(x) denotes
the classification function of the weak classifier for a given
sample x. Each h(x) classifies barely better than randomly
guessing. By connecting them in series a strong classifier
with high detection rate emerges. Equal to the Viola-Jones
framework the weak classifiers utilized here are Haar-like
features whose responses are thresholded to enable binary
classification. The thresholds are set independently for
each feature by the algorithm given by Viola and Jones
[15]. According to this, each weak classifier consists of a
thresholded Haar-like feature of a certain size at a certain
relative position in the samples’ image patches (see fig. 4).
For training a dataset {(x1, y1,w1)...(xN, yN,wN )} has

to be constructed with positive and negative samples x,
their corresponding true labels y and a weightw indicating
the importance to classify the sample correctly for increas-
ing the classifier’s quality. In the beginning all weights are
set to be equal. While training, those weak classifiers per-
forming best on the training dataset with respect to the

Figure 4. Two Haar-like features at different posi-
tions in the image patch, each corresponding to a
weak classifier.

samples’ weights w are iteratively drawn from a pool and
added to the strong classifier’s set. The weight of the
weak classifier within the set is determined according to
its training error. The lower the error is, the higher is the
classifier’s weight. As covering the infinite class of non-
windows by a finite set of negative samples is impossible,
it can only be approximated. For this reason, after adding
a weak classifier to the set new, negative samples are boot-
strapped which are yet misclassified by the current strong
classifier and added to the existing dataset. The weight wi

of each sample of the set is then adapted corresponding
to its classification result so that currently misclassified
samples increase in importance and vice versa. Since this
promotes the selection of weak classifiers obtaining the
correct class of currently misclassified samples, the focus
of the emerging strong classifier is shifted towards these
samples. This further improves the strong classifier to
correctly classify a wide spectrum of samples.
Out of this a strong classifier emerges that can already

be used for classification. Therefore a weighted majority
vote of all holded weak classifiers is done:

T∑
t

αth(x)t ≥
1
2

T∑
t

αt

However, evaluating all weak classifiers on a sample
is very time consuming and unnecessary unless the sam-
ple is positive. Arranging the weak classifiers within the
strong classifier in a cascaded layout highly decreases the
required evaluations. A subsequent weak classifier is then
only evaluated if its predecessors classified the sample pos-
itive. Otherwise the evaluation is terminated prematurely
and the sample is classified negatively. This behavior is
implemented by a sample trace which contains the partial
sum of all already evaluated weak classifiers. After each
evaluation, the sample trace is compared to a rejection
threshold to determine whether the sample is further pro-
moted through the cascade or rejected as negative sample.
An illustration of this procedure is given in figure 5. In
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contrast to the Viola-Jones framework, each weak clas-
sifier represents a single stage within the cascade. The
decision if a sample is rejected becomes softer as it does
not only depend on the previous stage but on all stages
previously evaluated. The order of the weak classifiers as
well as the rejection thresholds highly affect the quality
of the detection. A proper setting of those is done in a
calibration step on an already trained classifier. Given a
calibration dataset which is constructed like the training
dataset but contains a new set of samples, the weak clas-
sifiers are reordered with regard to the performance on
this set. For each sample in the set, its sample trace is
maintained. Based on these traces the rejection threshold
of each stage can be set so that each stage rejects as much
negative samples as possible but only a certain percentage
of positive samples. Once the classifier is calibrated, the
stages are evaluated one after the other and each resulting
partial sum is compared to the corresponding rejection
threshold of the stage. When the sum drops below the
threshold, the sample is discarded and marked as nega-
tive. If, elsewise, the sample passes through all stages, it
is classified to be positive.

3.3 Sliding Window Detector

The classifier of our system accepts image patches and
returns whether they mainly consist of a window or not.
For finding windows in facade images, hence, a detector
is required which passes relevant patches to the classifier
and processes the returned decisions. Due to the cascaded
structure of the classifier, negative patches are declined in
early stages so that they can be processed very fast. For
this reason there is no need for an optimized detection
algorithm.
We use the naive sliding window detector proposed by

Viola and Jones [15]. For a given image a rectangular sub-
window slides across the entire image in multiple scales.
The shifting step size depends on the particular scale of
the subwindow. At each position the enclosed image patch
is passed to a classifier. If the classifier resolves a patch to
contain an object of interest, i.e. a window, the subwindow
is memorized as a region of interest (ROI). Since the cas-
caded classifier is to some extend insensitive to changes in
translation and scale of the object within the image patch,
multiple ROIs may occur within a region around an ob-
ject [15]. The memorized ROIs are reprocessed such that
overlapping ones are averaged, resulting in a single ROI.
We specify the images passed to the detector to be recti-

fied and completely filled by facade, sowe can approximate
expected window dimensions by the image’s dimensions.
Based on this, we define the minimal sliding subwindow
dimensions to be half that size which corresponds to a
starting scale of s = 1.0. After each run across the facade
image the subwindow is scaled by a factor of 1.25. The

Figure 5. Schematic illustration of the cascaded clas-
sification procedure. The weak classifiers of each
stage are only evaluated if the sample trace s is
higher than the rejection threshold ri of the pre-
ceding stage. A sample is positively classified if it
passes through the whole cascade. Otherwise it is
prematurely declined and negatively classified.

step size of shifting starts with ∆ = 1.0 and is scaled after
each run by [s∆], where [] denotes a rounding operation.
At each position the underlying image patch is passed to
the classifier. To separately detect windows which are po-
sitioned close together we only merge positively classified
ROIs which overlap at least by a factor of 0.75.

4 Experiments
In the following we present two experiments. In the first

experiment, described in section 4.1, we run our detection
system on non-rectified facade images. We compare our
detection results to those of the approach of Ali et al. [4].
By contrasting the results we examine the improvements of
the soft cascaded classifier over theViola-Jones framework
on the window detection task. In a second experiment (see
section 4.2) we run our system on a set of rectified facade
images. We then compare the results to our system of the
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non-rectified experimental setup to highlight the effect of
rectified windows to the classification results.

4.1 Detection on Non-Rectified Images

To train our classifier analogous to Ali et al. [4] we
manually cut out 1500 windows from the TSG-60 [20]
and ZuBuD [5] image datasets. Both sets contain images
of facades taken from different viewpoints and in varying
illumination conditions. In contrast to Ali et al. [4] we
discard the TSG-20 [19] dataset from training as it is a
subset of TSG-60. Instead we take 900 positive samples
from the TSG-60 dataset which were taken from a view-
point of approximately 30◦ to the facades plane. Another
600 windows from various viewpoints are taken from the
ZuBuD dataset. We also add the vertically flipped version
of each window to our training dataset so that the set addi-
tionally covers windows taken from opposing viewpoints.
Overall our training set contains 3000 positive samples
and, initially, 3000 randomly chosen non-windows as neg-
ative samples. After training we calibrate our classifier on
further 3000 samples of these datasets.

For evaluation we use the setup of Ali et al. [4] to
compare their detection results to ours. Therefore we
evaluate our detection system with the calibrated classifier
on the same three distinct datasets. We use each 40 images
of both, the TSG-20 and TSG-60 dataset. We also use 115
images of the ZuBuDQuery Imageswhich contain a subset
of the facades shown in the ZuBuD dataset. All of the
images considered for evaluation are taken from different
viewpoints and illumination conditions than those of the
training set.
As the exact position and size of the detected windows

are relevant for subsequent risk analyses we apply the sin-
gle window evaluation approach of Ali et al. [4]. Accord-
ing to this, a detection is marked as true positive only if
the hypothesis is inside the manually labeled ground truth
rectangle or has a maximal overlap of 5 pixels in each di-
rection. Additionally, the hypothesis has to cover at least
75% of the underlying bounding box of the ground truth
label. A hypothesis is marked as false positive if it covers
less than 5% of a ground truth label. The detection results
are summarized in table 1.

Dataset True positive in % False positive in %
TSG-20 69.1 7.7
TSG-60 60.3 8.9
ZuBuD 39.6 3.1

Table 1. Detection results of our system on non-
rectified datasets.

For applying the single window evaluation with a cover-
age of at least 75%Ali et al. [4] stated true positive rates of
57%, 52%, and 30% on the TSG-20, TSG-60, and ZuBuD

Query Images datasets, respectively. False positives were
below 9% for all datasets. With similar false positive rates
and true positive rates of 69.1% on TSG-20, 60.3% on
TSG-60, and 39.6 on ZuBuD Query Images our detection
system performs better on non-rectified facade images. By
the substitution of the classifier we achieve an increase in
the true positive rate up to 12% on the TSG datasets while
keeping the false detections on the same level. Although
ZuBuD constitutes a very challenging dataset because of
many different viewpoints and uncommon buildings with
unique window shapes such as churches, our system in-
creases the true positive rate by 9% associated with a
marginal increase in false positive rate by 1%. Neverthe-
less, in general these rates are far from being sufficient for
precise risk assessment analyses as visible in the sample
images in figure 6. Since we only exchanged the classifica-
tionmethod, the results of this experiment demonstrate the
improvement of the soft cascade compared to the Viola-
Jones classifier. Thus, the soft cascade approach offers a
better basis to further improve the detection rate.

(a) (b)

(c)

Figure 6. Detections on different facade types an
viewpoints. (a) Good detection rate on simple fa-
cades with commonwindows. (b) Decreased perfor-
mance on complex facade appearance. (c) Despite
simple facade few detections due to viewpoint.

4.2 Detection on Rectified Images

In this experiment we compare the soft cascaded clas-
sifier’s performance on non-rectified facade images to the
performance on rectified images. For training the classifier
which runs on rectified samples, we use the Ecole Cen-
trale Paris Facades Database [13]. The dataset consists of
478 rectified facade images from various cities in Europe
and the United States. We take 3000 randomly chosen
windows from this and initially add the same amount of
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non-windows to the training set. For comparison we use
the classifier already trained in the experiment in section
4.1 to run on non-rectified samples.
We evaluate the classifier for rectified samples on 3080

positive and 10000 negative image patches of the Ecole
Centrale Paris Facades Database which were not shown
while training. For the evaluation of the other classifier,
we use 3102 positive and 10000 negative image patches
equally distributed of the TSG-20, TSG-60, and ZuBuD
Query Image datasets. We compare both classifiers by
means of their receiver operating characteristic (ROC)
curve shown in figure 7. Their curves are generated by
plotting their detection rate against false positive rates
while increasing the classification threshold from 0.5 up
to 1.

false positive rate ×10-3
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Figure 7. Comparative detection performances of the
non-rectified and the rectified classifier by means of
their ROC curves.

As theROCcurves of the classifiers clearly illustrate, the
classifier for rectified images outperforms the one running
on non-rectified images. Especially for false positive rates
lower than 0.004% it provides reasonable detection rates
of more than 71% whereas the non-rectified classifier only
achieves around 40%. To obtain sufficient detection re-
sults very small false positive rates are a prerequisite since
the detector scans hundred thousands of subwindows per
image. Although the classifier for rectified facade images
we trained in this experiment provides much better detec-
tion rates than the one for non-rectified images, its false
positive rates are still too high for a precise prediction. By
applying our detection system to rectified facade images
at least a sufficient approximation to the real window-to-
facade ratio is practicable as can be seen in the samples in

figure 8.

(a) (b)

Figure 8. Detections on rectified facades. (a) De-
tections of windows close together may be shifted
due to merging. Some windows are missed. (b)
Even slightly occluded windows are detected. No
detection of store windows.

5 Conclusion
For risk assessment of ground movement induced dam-

ages to existing buildings, analyses aremadewhich require
precise information about a structure’s stiffness. Since
publicly available data sources only provide block mod-
els of buildings, these have to be enhanced to facilitate
analyses. As windows highly decrease the stiffness of a
structure, we developed an approach to window detection
in facade images based on the findings of Ali et al. [4].
Our approach consists of a sliding window detector in
combination with a soft cascaded classifier.
In the experiments, we showed that this setup improves

over the Viola-Jones framework. Additionally, we tested
our classifier on rectified facade images which further im-
proves the detection rate. The results our system achieved
in the experiments are sufficient for analyses estimating
a damage class for an existing building. Thereby many
buildings along a potential tunneling alignment or within
an earthquake area may automatically be discarded from
further personal investigation as the risk of damages is
very low. This highly reduces human effort for inspection
of buildings resulting in time and cost savings.
However, the detection rate is still too low for a precise

analysis. Some windows are slightly below the rejection
threshold due to occlusions or bad illumination conditions
and are thus declined by the classifier. To increase the
detection rate future work may cover a post processing in
which possiblewindowpositions are derived from thewin-
dows already detected. At these positions classifiers with



34th International Symposium on Automation and Robotics in Construction (ISARC 2017)

slightly lower thresholds can be used to detect previously
missed windows.
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