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Abstract  

Real-time vision systems are widely-used in 

construction and manufacturing industries. A 

significant proportion of computational resources of 

such systems is used in fiducial identification and 

localisation for motion tracking of moving targets. 

The requirement is to localise a pattern in an image 

captured by the vision system precisely, accurately, 

and with a minimum available computation time. As 

such, this paper presents a class of patterns and, 

accordingly, proposes an algorithm to fulfil the 

requirement. Here, the patterns are designed using 

circular patches of concentric circles to increase the 

probability of detection and reduce cases of false 

detection. In the detection algorithm, the image 

captured by the vision system is first scaled down for 

computationally-effective processing. The scaled 

image is then separated by filtering only the colour 

components, which are made up of outer circular 

patches in the proposed pattern. A blob detection 

algorithm is then implemented for identifying inner 

circular patches. The inner circles are then localised 

in the image by using the colour information 

obtained. Finally, the localised pattern, along with the 

camera and distortion matrix of the vision system, is 

applied in a perspective-n-point solving algorithm to 

estimate the marker orientation and position in the 

global coordinate system. Our system shows 

significant enhancement in performance of fiducial 

detection and identification and achieves the required 

latency of less than ten milliseconds. Thus, it can be 

used for infrastructure monitoring in many 

applications that involve high-speed real-time vision 

systems. 
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1 Introduction 

Vision-based systems have numerous applications in 

robotics and automation systems used in industry, 

including construction and manufacturing. For instance, 

in [1], a vision-based system is presented for 3D terrain 

surface reconstruction of a construction site by using 

stereo cameras. The vision systems can also be integrated 

with unmanned vehicles to monitor and inspect a 

disaster-prone location, as reported in [2]. 

One of the purposes of the vision-based systems is to 

localise and track moving targets, for example, for colour 

tracking of a multiple robot system [3], or monitoring of 

equipment in construction and surface mining [4]. To 

this end, markers are widely used in these systems to 

precisely estimate the position and orientation of moving 

targets. In construction, such systems can be helpful in 

estimaton of the pose and position of the end effector of 

excavators to analyse the workflow during the 

earthmoving process [5]. Furthermore, the developed 

fiducial system will be used in thermal stress analysis 

(TSA) of vibrating mechanical systems using the vision 

camera, thermal sensors and the state-of-the-art optical 

sensor pointing technology available at Ocular such as 

the Robot Eye [6] shown in Figure 1.  

One of the challenges in fiducial tracking is the least 

computation time required to accurately detect and 

localise the marker. This is especially important in high-

speed applications where computational resources are 

used for other critical processes as well, such as control 

and management. In these scenarios, if too much 

computation time is spent in fiducial localisation, then it 

may affect the overall performance of the system. 

To address the problem mentioned, we present a 

marker system and the method to detect the markers with 

a latency for detection of less than 10 ms. The proposed 

marker consists of concentric circles located at four 

corners of a square. The purpose of the outer circles is to 

reduce the possibility of false detection of the inner 

circles. In the detection algorithm, computational 

efficiency is achieved by downscaling the images 

captured by the vision sensor. Then, to detect the inner 

circles we segment the scaled image into binary images 

which represent only the colour components made up of 

the outer circles. The inner circles are then detected and 

localised in the binary images. Finally, to estimate the 

position and orientation of the marker in the 3D space, 

we use the Levenberg-Marquardt optimisation algorithm 

iteratively. 

The organisation of this paper is as follows. First, the 

paper discusses the fiducial design in the Section 2, 
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followed by, the description of the algorithm for its 

detection and localisation, Section 3. Then, results of the 

comparative study of our marker system with standard 

markers are presented in Section 4. Finally, the paper 

concludes with a conclusion. 

 

 
Figure 1. Ocular Robot Eye  

2 Fiducial Design 

There are many marker systems that make uses of 

circular patches. For instance in [7], colour-coded 

circular markers are arranged in various shapes such as 

circle, triangle, square, etc. However, such a marker 

system can have a higher possibility of false detection if 

the circles outside the region of interest are incorrectly 

detected. A typical pattern with circular patches is 

presented in Figure 2, where the circle is detected outside 

the region of interest. This may reduce the performance 

of a detection algorithm for single-circle markers.  

 
Figure 2: False detection of circles outside the marker 

region 

To overcome the drawback of a fiducial design with 

single circular patches mentioned above, we propose to 

use markers with concentric circles, where the outer 

circles are made up of two distinct colours, blue and 

green in this case. The proposed marker is shown in 

Figure 3, where the rationale for its choice is that if the 

inner circles can be searched for by using only the pixels 

consisting of the colour of outer circles, then the 

incorrect detection of circles outside the pattern region of 

interest is significantly reduced. Notably, the circle at the 

center of the pattern is not used in the detection 

algorithm. Nevertheless, this circle can have a special 

usage in tracking the thermal targets in motion. 

Particularly, the pattern can be attached to the target with 

the area of interest located within the central circle. 

 

 
Figure 3. Proposed marker 

3 Marker Detection and Pose Estimation 

In the following section, we present the process of the 

detection and localisation of the inner circles of the 

marker, followed by, the procedure for estimation of its 

position in 3D space. 

3.1 Image segmentation 

In this step, the images captured by the camera is first 

scaled down by a factor of 4:1. The scaling effect 

reduces the computational latency of the detection 

algorithm. After scaling, two binary images are produced 

to represent the presence or absence of colour 

components of the outer circles. In order to obtain the 

binary images, we apply a threshold on every pixel of the 

scaled image. The threshold depends on the conventional 

Hue-Saturation-Value (HSV) model of the colour of the 

outer circles, where H corresponds a pure colour with 

H=0 refered to Red, S describes the whiteness with S=0 

for White, and V is for darkness with V=0 for Black. 

Figure 4 represents the segmentation step. 

 

 

Figure 4: Segmentation of captured image into binary 

images 
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3.2 Inner circle detection   

In order to detect the inner circles two methods can be 

applied here, namely the Hough detection method and 

blob detection method. 

3.2.1 Hough circle detection 

The Hough detection method uses the circular Hough 

transform to find circles in an image. If an image 

contains many points, some of which fall on perimeters 

of circles, then the search objective is to find parameter 

triplets (a, b, r) to describe each circle of centre (a, b) 

and radius R: 
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where angle θ sweeps through the full 360 degree range 

that the points (x, y) trace the perimeter of a 2D circle. 

The fact that the parameter space is 3D makes a direct 

implementation of the Hough circle technique (HCT) 

more expensive in computer memory and time. Indeed, 

the fiducial marker, however, goes through 

transformations, i.e. rotational and translation which 

produces an ellipse in the image plane of the camera. In 

this scenario, the Hough detection method becomes 

ineffective. This is clearly demonstrated in Figure 5(a), 

where the algorithm fails to detect inner circles of the 

fiducial. In addition, for better performance, HCT 

requires filtering for smoothing, which further increases 

the computational load. Thus, for the inner circle 

detection in the marker, this method is not a suitable. 

 

 
(a)                                            (b) 

Figure 5: Comparison of (a) Hough circle detection, and 

(b) blob detection  

3.2.2 Blob detection algorithm 

Based on the general concept that blobs of an image 

are meaningful regions to interpret its main features. 

Here, the blob detection algorithm (BDA) is based on the 

contour detection for extracting distinct regions from the 

background. This algorithm first detects a contour in the 

provided image, which is not necessary a circle but can 

be elliptical patches. Then, the BDA connects the 

overlapped contours and may be rotated in 3D. As a 

result, this method is suitable for inner circle 

identification of the marker. The detection of the inner 

circles of the marker by the blob detection method is 

presented in Figure 5 (b), where the inner circles present 

more meaningful features. Similarly, the identification of 

the inner coloured circles using the blob detection 

algorithm is presented in Figure 6. 

 

 
 

Figure 6: Inner circle detection using the blob 

detection algorithm 

 

3.3 Circle localisation and pose estimation 

After detecting circles in the binary images, the inner 

circles are identified by checking the H-S-V value of the 

center of the circles in the original image. The inner 

circles are identified in the image plane if the H-S-V 

values lies within the pre-defined colour threshold for the 

inner circles. In other words, suppose  is the centre of a 

detected circle in the binary images and  

is the function mapping a pixel to the H-S-V value, then 

the detected centre is identified as the kth inner circle if 

the condition  (k =1,2,3,4) is 

satisfied, where and  and  are the 

minimum and maximum colour threshold for the kth 

inner circle, respectively. 

After the localisation of the inner circles in the image 

plane, the orientation and position of the marker are 

estimated by solving the Levenberg-Marquardt 

optimisation for the non-linear least square minimisation 

problem: 

 2

1
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N
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j

d PXx


, 

where jx  and jX  are respectively the image point in 

the image plane and the scene point in the world 

coordinate system, and d(x,y) is the Euclidean distance 

between two vectors x and y, and P is the camera 

projection matrix. The projection matrix P is given by  
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where fx and fy are respectively the focal length of the 

camera in x and y direction, cx and cy are the principal 

axes, R  is the rotational matrix and t  is the 

translational vector of the camera with respect to the 

pattern coordinate system. The camera matrix K  is 

obtained from the camera calibration and should be 

considered in the optimisation, as described in OpenCV 

[8]. The library of OpenCV provides the interfaces for 

the optimisation. The solver solves for R  and t  after 

the recursive optimisation. Figure 7 summarises the 

processes of marker detection and pose estimation. 

 

 
 

Figure 7: Orientation and position estimation of the 

fiducial marker in 3D space 

 

The flowchart depicted in Figure 8 illustrates the marker 

detection procedure. Even though colour markers are 

used in our fiducial system, they are detected and 

localised in binary images in order to consume less 

computational load. In addition, the images are also 

scaled before the detection method is applied. As a result 

of these operations, the expected low latency can be 

achieved for detection of markers. 

4 Experiment and results 

In this section, we present the benchmarking of our 

proposed marker detection system with standard marker 

detection systems, such as the Aruco and AprilTags 

markers.   

4.1 Aruco Marker system 

Aruco marker system uses the binary-coded markers, 

as shown in Figure 9. To correct the binary codes in the 

detected image, hamming codes can be used as reported 

in [9]. The detection algorithm for a marker system 

consist of three stages, namely (i) image segmentation, 

(ii) contour extraction and (iii) marker identification. The 

Aruco marker is one of the standard marker systems for 

camera calibration. Its interfaces are included in the 

OpenCV 3.1.0 library [8].  

 
 

Figure 8: Flowchart for the marker detection procedure 

 

4.2 AprilTags marker system 
 

AprilTags is also one of the widely used marker 

systems. A marker of Apriltags consists of binary codes, 

as depicted in Figure 10. In the detection algorithms of 

the marker system: first, the line segments are detected, 

followed by quad detection, and finally, the binary codes 

are extracted and corrected [10]. 

The size of markers used in the experiment is listed in 

Table 1 below. 

Table 1. Marker size used in experiment 

Marker Size 

Aruco 5.5 × 5.5 cm 

AprilTags 5 × 5 cm 

Proposed marker 5 × 5 cm 
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Figure 9: Aruco marker 

 

 
Figure 10: AprilTag marker 

 

In our experiments, a high frame rate camera was 

used to take images of the markers. The camera was 

operated at 100 frames per seconds, and the depth of 

field for the camera was set to 50 cm with the lower limit 

of 50 cm and the upper limit of 100 cm. The 

specifications of the camera are listed in Table 2. 

Similarly, the algorithms for markers detection were 

tested in a PC with Intel ® Core ™ i7 CPU operating at 

the clock frequency of 3.4 GHz, and 16 GB RAM.  

 

Table 2. Specifications of camera 

Resolution 658 × 492 

Focal length 16 mm 

Aperture F/2-22 

 

The experiments were performed by varying the 

distance of the markers from the camera. The markers 

were placed at the distance of 40 cm, 50 cm, 90 cm, and 

120 cm, respectively.  

The results of the experiments are presented in 

Figures 11 and 12, respectively. Figure 11 shows the 

detection ratio of the fiducial systems. The detection 

ratio for the individual marker systems is calculated by 

taking the ratio of the number of detected frames over 

total frames during an experiment. From the figure it is 

clear that the detection ratio for our proposed marker 

system and the Aruco marker system is better than 

AprilTags, when the markers are placed from 40 cm to 

90 cm from the camera. However, the performance of the 

detection algorithms decreases when the markers are 

placed beyond the far limit of the depth of field of 

camera, i.e. 100 cm. Even in this case, the detection ratio 

of the proposed system is still better than Aruco markers. 

 
Figure 11: Detection rate at various distance from 

camera 

 

 

 
 

Figure 12: Average computation time for all markers 

 

 

Figure 12 shows the average computation time for all 

the fiducial tracking systems. The computational time is 

evaluated in milliseconds while the vertical bars in the 

graph shows the standard deviation in the marker 

detection time. It is evident from the figure that the 

proposed marker detection system performs much better 

compared to the other standard markers. For instance, the 

detection time for the proposed algorithm is 5 ms, 

compared to 35 ms and 28 ms for the Apriltags and 

Aruco marker systems, respectively. In addition, the 

standard deviation for the computation time is also small 

compared to other standard methods. Although the 

computation time increases slightly when the marker is 

beyond the upper limit of the depth of field of the 

camera, i.e. 100 cm from the camera, the low latency in 

terms of computation time is still upheld. Notably, the 

computation time for the Aruco marker is less than that 

of the AprilTags, but the standard deviation is much 

greater. From this experiment, it can be concluded that 

our proposed marker detection system can detect and 

localise marker in less than 10 ms to meet the 

requirement of high-speed real-time vision-based 

systems . 
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Conclusion 

This paper presents a fiducial tracking system which 

is designed to track moving targets. The proposed 

fiducial in our tracking system consists of concentric 

circular patches. A comparison study of our proposed 

system with other standard marker detection systems 

shows that our method can detect the marker accurately 

and have much lower computational latency compared to 

the standard markers. Our system can detect fiducials in 

less than 10 milliseconds which make it suitable for 

high-speed applications such as moving object tracking. 
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