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Abstract – 

Determining accurate concrete strength is a 

major civil engineering problem. Test results of 28-

day concrete cylinder represent the characteristic 

strength of the concrete that has been prepared and 

cast to form the concrete work. It is important to 

wait 28 days to ensure the quality control of the 

process, although it is very time consuming. Machine 

learning techniques are progressively used to 

simulate the characteristic of concrete materials and 

have developed into an important research area. 

This study proposed a comprehensive study using an 

advanced machine learning technique to predict the 

compressive strength of concrete from early age test 

results. In this case, early age test data are being 

used to get reliable values of the two constants which 

are required for the prediction. A total of 28 

historical cases were used to establish the intelligence 

prediction model. Obtained results show the 

performance of the advanced hybrid machine 

learning technique in predicting the concrete 

strength with a relatively high accuracy measured by 

four error indicators. Therefore, the proposed study 

can offer a high benefit for construction project 

managers in decision-making processes based on 

early strength test results.  
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1 Introduction 

Concrete is a material used in construction that has 

great versatility and which is used across the globe. 

Concrete has several advantages, including good 

compressive strength, durability, workability, 

construction availability, and low cost. Nevertheless, 

these benefits have a serious reliance on curing, placing, 

and the appropriate mix. Strength, within the 

construction industry, is a major criterion in the 

selection of a concrete to be used in a specific 

application. Construction concrete will gain strength 

throughout an extended period after it has been poured. 

Concrete’s nominal strength has a definition of a 

sample’s compressive strength that is 28 days old. 

If there is a faulty mix preparation or mix design on 

site, the results of the test may indicate failure to reach 

the required strength, triggering a mandatory repeating 

of the whole process, and this can be time consuming 

and costly. For all failures, another 28 days must be 

awaited, so there has long been a requirement for an 

ability to estimate, at an early age, the concrete’s final 

strength. Therefore, an appropriate, quick method of 

predicting concrete strength would be a significant 

advancement for the industry [1]. An ability to predict 

the compressive strength of concrete early allows 

constructers to quickly understand the concrete’s 

probable weaknesses and make a decision to manage a 

destruction process or continue with construction. 

Further, to the benefit of both user (or purchaser) and 

producer, reliably and rapidly predicting the results of a 

28-day test would benefit all stakeholders as opposed to 

waiting the full, conventional, 28 days. 

Researchers are eager to explore the behavior of the 

concrete, therefore predicting concrete strength, and this 

has been targeted as an active area to be researched. 

There are multiple recent studies exploring concrete’s 

behavior and the possibility of improving characteristic 

strength predictions. The studies have revealed that 

many tests have concentrated on the way that the 

strength of the concrete is affected by the mix, but only 

a small number of studies have focused on the relation 

between early testing (for example, 7 and 14 days) and 
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the full 28-day compressive strength test. Moreover, 

most of the studies have some limitations; for example, 

an absence of advanced method for measuring accuracy, 

no validating techniques involved, or using only a 

conventional approach. 

Machine learning methods are proven to outperform 

conventional methods because of their excellent 

learning functions [2-6]. The conventional approaches, 

such as linear regression and decision tree, are not 

sufficient to build a satisfactory model in terms of 

accuracy and computational time. Therefore, this 

primary research aim is to construct an advanced 

accurate model to improve early age predictions of 

concrete strength. 

This research proposes a new advanced machine 

learning technique called Symbiotic Organisms Search-

based Support Vector Regression (SOS-SVR). SOS-

SVR fuses an accurate prediction technique, Least 

Squares Support Vector Regression (LS-SVR) [7], and a 

very promising metaheuristic, Symbiotic Organisms 

Search (SOS) [8]. The proposed model will be 

investigated alongside other prediction methods in 

building an accurate prediction model of concrete 

strength in correspondence to the early age strength test 

results.  

2 The Proposed Metaheuristic-Based 

Machine Learning Technique 

2.1 Least Squares Support Vector Regression 

LS-SVR is a modified version of the support vector 

regression (SVR) [9]. The LS-SVR is a statistical 

learning theory that adopts a least squares linear system 

as a loss function instead of the quadratic program in the 

original support vector machine (SVM) [10]. The 

optimization problem and the constraints for LS-SVR 

can be stated by the following formulation. 

Minimize: 𝐽𝑝(𝑤
, 𝑒) =

1

2
𝑤𝑇𝑤 + 𝛾

1

2
∑ 𝑒𝑘

2𝑁

𝑘=1
  (1) 

Subjected to: 𝑦𝑘 = 𝑤𝑇𝜙(𝑥𝑘) + 𝑏 + 𝑒𝑘 , 𝑘 = 1,… , 𝑁 (2) 

where w ∈ R is an undetermined parameter vector; 

ϕ(⋅) is the nonlinear function introduced by a kernel 

function for mapping the input space to a high-

dimensional feature space; ek ∈ R is error 

variable; γ denotes a regularization constant. 

It is worth noting that the objective function includes 

a sum of squared fitting error and a regularization term. 

However, when w becomes infinite dimensional, one 

cannot solve this primal problem. Therefore, it is 

necessary to construct the Lagrangian and derive the 

dual problem. The resulting LS-SVR model for function 

estimation is expressed as: 

𝑦(𝑥) = ∑ 𝛼𝑘𝐾(𝑥𝑘
, 𝑥𝑙)

𝑁
𝑘=1 + 𝑏   (3) 

where αk and b are the solution to the linear system. 

The kernel function that is often utilized is the radial 

basis function (RBF) kernel. Description of RBF kernel 

is given as follows: 

𝐾(𝑥𝑘
, 𝑥𝑙) = 𝑒𝑥𝑝 (

‖𝑥𝑘−𝑥𝑙‖
2

2𝜎2
)   (4) 

where σ is the kernel function parameter. 

 

There has been an increased used of the LS-SVR in 

many engineering fields. However, the LS-SVR 

presents a problem in prediction accuracy whenever its 

parameters are not fine-tuned. The regularization 

parameter (γ) is a positive cost parameter similar to the 

C in SVM/SVR, while the kernel parameter (σ) is an 

additional parameter since LS-SVR utilized the RBF 

kernel function. These two parameters need to be 

specified in order to find the best prediction model. 

Thus, there is a need of metaheuristic algorithm in order 

to find the most effective combination of LS-SVR 

parameters. It has been shown that the self-tuned 

parameter approaches, involving the metaheuristic as 

the optimizer, have been studied extensively and has 

produced an increased prediction accuracy [11, 12]. 

2.2 Symbiotic Organisms Search 

In recent years, many researchers proposed a new 

metaheuristic algorithm to search for optimality in 

various optimization problems. It has been proven that 

metaheuristic algorithm can be an effective tool in 

dealing with challenging problems. Some notably, 

examples of recent metaheuristic algorithms 

applications in tackling hard and complex problems can 

be seen in [13-18]. 

Another new and powerful metaheuristic algorithm 

namely symbiotic organisms search (SOS) has been 

proposed by Cheng and Prayogo [8] to solve the 

continuous based optimization problems. The 

experimental results have been shown in the high 

efficiency of SOS performance in comparison with the 

conventional metaheuristic techniques including genetic 

algorithm (GA), particle swarm optimization (PSO), and 

differential evolution (DE).  

The SOS algorithm adopts the interaction behaviour 

among organisms which are living together in one 

ecosystem. It gradually guides a population of candidate 

solutions, denoted as organisms, towards promising 

regions in the solution space. Each candidate solution, 

denoted as organism, has a certain fitness value which 

corresponds to the objective function or goal of the 

problem. The main steps of the SOS algorithm can be 

seen as follows. 

1: Initialize random population 

2: Do 
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3:    Mutualism phase  

4: Commensalism phase  

5: Parasitism phase  

6: Preserve the current best solution 

7: Until termination criteria are met 

For more details, the reader can refer to [8]. Since 

the first publication in 2014, the use of SOS in solving 

different problems has been significantly increased in 

various research topics [19-27]. It shows the potential of 

SOS algorithm as an attractive tool to search for the 

optimality. 

2.3 Symbiotic Organisms Search-Based 

Support Vector Regression 

The symbiotic organisms search-based support 

vector regression (SOS-SVR) model is a hybrid 

machine learning system that combines the two 

different techniques of SOS and LS-SVR. In this system, 

the LS-SVR acts as a supervised-learning-based 

predictor to build the accurate input-output relationship 

of the dataset; and the SOS works to optimize the LS-

SVR parameters, the  and γ parameters.  

The SOS-SVR involves eight major steps which are 

categorized into two phases, beginning with a training 

phase followed by the testing phase. The whole 

procedure of SOS-SVR is shown in Figure 1. An 

explanation of the major steps involved in SOS-SVR is 

given below: 

 
Figure 1. SOS-SVR framework. 

 

1. Hybrid AI System: 

LS-SVR addresses the complex relationship 

between input and output variables. LS-SVR 

requires two parameters,  and γ, to finish the 

learning process. LS-SVR will gradually obtain 

the tuning parameters from the optimizer – the 

SOS algorithm. 

In this hybrid system, SOS is utilized to explore 

the various combinations of  and γ parameters to 

look for the best set of them. SOS utilizes 

mutualism, commensalism, and parasitism phases 

to gradually improve the fitness value of each 

solution. 

The process terminates when the termination 

criterion is satisfied. While still unsatisfied, the 

model will proceed to the next iteration. As SOS-

SVR uses SOS, the termination criterion used in 

this study was the SOS iteration number. 

 

2. Training and testing: 

The data for training are obtained from data 

collection. A fitness function is now developed to 

evaluate accuracy of the learning system. This 

function has a correlation with the accuracy of the 

prediction model. The most accurate prediction 

model is represented by the combination of  and 

γ parameters that produce the best fitness value. 

Instead of randomly splitting the data, it was 

partitioned into two subsets: learning subset and 

validation subset. To avoid the sampling bias, the 

5-fold cross-validation technique is used in 

splitting the training data into learning and 

validation subsets. In this study, the fitness 

function utilizes mean square error (MSE) of the 

validation dataset. When the termination criterion 

is fulfilled, the loop stops. This condition means 

that the prediction model has identified the 

input/output mapping relationship with the optimal 

 and γ parameters.  

Meanwhile, the data for testing is obtained from 

data collection. The optimal  and γ parameters 

obtained from the training phase are used to 

establish the prediction model for predicting the 

testing data.  

 

3. Output Results: 

The optimal  and γ parameters obtained from the 

training phase are used to establish the prediction 

model for predicting the testing data. The accuracy 

measurement methods are used to measure the 

performance of the SVR-based prediction model. 

3 Experimental Settings 

3.1 Data Preparation 

The historical database for experiment was obtained 

from previous literature [28]. In this research, the 

database is assigned into two group of dataset: (1) the 

mix proportions with 7-day strength test result and (2) 

the mix proportions with 14-day strength test result. 
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Each dataset has a total of 28 records of concrete mix 

proportion and were used to analyse the behaviour of 

concrete mixture with strength at the various early ages. 

Every dataset has 6 input variables and 1 output variable, 

including the coarse aggregate to cement ratio (CA/C), 

fine aggregate to cement ratio (FA/C), water to cement 

ratio (W/C), water (W), coarse aggregate size ratio of 10 

mm:20 mm (CAS), 7-day or 14-day strength test result 

depending on each group (fc-7 or fc-14), and the 28-day 

strength test result (fc-28), respectively. The 

characteristics of the variables of each dataset can be 

seen in Table 1.  

Table 1 Statistical description of concrete mix 

proportion 

Variables Unit Group Min Max Avg. Std. dev. 

CA/C - 1, 2 1.4 2.24 1.811 0.256 

FA/C - 1, 2 2.22 2.97 2.591 0.236 

W/C - 1, 2  0.4 0.52 0.460 0.041 

W kg/m3 1, 2 185 190 187.5 2.546 

CAS - 1, 2  1 2 1.464 0.508 

fc-7 MPa 1  13.84 26.02 19.025 3.957 

fc-14 MPa 2 17.8 35.35 23.659 4.673 

fc-28 MPa 1, 2 19.53 37.4 26.972 4.143 

 

3.2 Accuracy Measurement and Parameter 

Settings 

Machine learning is recently employed to predict 

behavior in many research areas. For the comparison 

purpose to our proposed method, this research applies 

five widely used machine learning methods including 

classification and regression tree (C&R tree), neural 

network (neural net), regression, support vector machine 

(SVM), chi-squared automatic interaction detector 

(CHAID) to model the prediction behavior of concrete 

strength at various early ages. All aforementioned 

methods were performed using the IBM SPSS Modeler.  

The parameters of the machine learning techniques 

were set to default for fair comparison. Through trial-

and-error, a suitable parameter setting for SOS-SVR is 

determined as follows: the maximum number of 

iteration was set to 50; population size was set to 25; 

and search range for the  and γ parameters starts from 

10-5 to 105. 

The effectiveness of state-of-the art machine 

learning methods can be determined using the accuracy 

measurement methods. In this research, three 

measurement methods were adopted – coefficient of 

correlation (R); root mean squared error (RMSE); mean 

absolute error (MAE); and mean absolute percentage 

error (MAPE). The lowest RMSE, MAE, and MAPE 

values alongside with a highest R value indicate the best 

model outcome. 

3.3 Cross-validation 

To obtain the prediction result from each machine 

learning technique, the dataset must be labelled into two 

groups of training data and testing data. At first, the 

training data is used by one method to generate the 

prediction model. Then, the prediction model is applied 

to validate the testing data. Once the predicted output is 

generated, the accuracy measurement is performed to 

check the deviation between the predicted and actual 

output.  

During the partitioning of training and testing subset, 

there is a possibility for the bias associated with the 

random sampling. To minimize the sampling bias, 

cross-validation technique is utilized in this research. 

The main goal of the cross-validation technique is to 

ensure the partitioning process generating the 

independent and unbiased data subset. The data is then 

labelled into 5 folds and the performance of each fold is 

recorded and validated in accordance to each accuracy 

measurement. 

4 Results and Discussions 

The training and testing processes are performed for 

each predictive model. The complete experimental 

results based on 7-day and 14-day test results can be 

seen in Table 2 and Table 3, respectively. It can be seen 

that SOS-SVR has performed better in all measurement 

categories in the testing dataset.  

For training dataset, the SOS-SVR prediction model 

has produced a decent training accuracy as shown in 

Table 2. It is worth noting that C&R tree prediction 

model yielded the highest accuracy on training dataset 

but the model performs poorly on the testing set. The 

over-fitting had occurred during the training process of 

C&R tree. As a result, the generalization ability of C&R 

tree model to predict the future data is declined 

drastically. Although the SOS-SVR model did not have 

the highest accuracy on the training dataset, still it has 

the highest accuracy on the testing dataset. The 

metaheuristic-tuned framework helps the SOS-SVR to 

determine the right balance between learning and 

generalization paradigm. 
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Table 2 Comparative experimental results among 

predictive methods for 7-day strength test result. 

Machine 

Learning 

Techniques 

 

Average Result 

R 
RMSE 

(MPa) 

MAE 

(MPa) 

MAPE 

(%) 

Training 
    

C&R tree 0.9965 0.33 0.15 0.55 

Neutral net 0.8744 2.06 1.55 5.84 

Regression 0.9050 1.71 1.39 5.21 

SVM 0.8709 2.18 1.42 5.26 

CHAID 0.8618 2.06 1.42 5.14 

SOS-SVR 0.8853 1.99 1.30 5.11 

     
Testing 

    
C&R tree 0.7567 3.55 2.92 10.75 

Neutral net 0.8708 2.58 2.19 8.08 

Regression 0.8457 3.52 2.92 10.88 

SVM 0.8460 2.71 2.26 8.35 

CHAID 0.6788 3.77 2.96 10.79 

SOS-SVR 0.8793 2.49 2.01 6.96 

 

Table 3 Comparative experimental results among 

predictive methods for 14-day strength test result. 

Machine 

Learning 

Techniques 

 

Average Result 

R 
RMSE 

(MPa) 

MAE 

(MPa) 

MAPE 

(%) 

Training 
    

C&R tree 0.9983 0.22 0.12 0.45 

Neutral net 0.8467 2.20 1.58 5.81 

Regression 0.9180 1.58 1.21 4.53 

SVM 0.8962 2.00 1.21 4.41 

CHAID 0.8946 1.78 1.03 3.53 

SOS-SVR 0.8765 1.85 1.14 5.00 

 
    

Testing     

C&R tree 0.7516 4.19 3.35 12.87 

Neutral net 0.8215 2.86 2.43 9.69 

Regression 0.8289 2.86 2.21 8.63 

SVM 0.8499 2.64 2.13 8.43 

CHAID 0.8029 3.39 2.82 11.45 

SOS-SVR 0.8563 2.51 2.07 7.26 

 

 

Figure 2. Radar plot of normalized accuracy measures 

(7-day strength test result) 

 

 

 

Figure 3. Radar plot of normalized accuracy measures 

(14-day strength test result) 

Figures 2 and 3 further illustrate the comparative 

performance from each measurement category. Each 

value from average testing result is normalized into 0 to 

1 in which 0 denotes the current worst performance and 
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1 denotes the current best performance. The outermost 

line from the figures denotes the best performer. It can 

be seen that the SOS-SVR prediction model has 

delivered the best performance in all categories in 

comparison with other machine learning techniques. 

Figures 4 and 5 present a comparison of the actual 

and predicted values of the concrete strength at 7-day 

and 14-day test result, respectively. It shows the fit 

curve between the target and predicted output at training 

and testing stages of one fold. This further shows the 

effectiveness of SOS-SVR as the most reliable method 

for establishing the prediction model in this experiment. 

Figure 4. Actual and predicted concrete strength by 

SOS-SVR prediction model at training and testing 

stages for one fold (7-day strength test result). 

Figure 5. Actual and predicted concrete strength by 

SOS-SVR prediction model at training and testing 

stages for one fold (14-day strength test result). 

5 Conclusion 

This study developed a new prediction method 

called symbiotic organisms search-based support vector 

regression (SOS-SVR) to predict the strength of 

concrete mixtures from the early age test result. To 

investigate the accuracy of the proposed method, five 

machine learning techniques were used as benchmarks 

for the SOS-SVR. The experimental data set was 

acquired from laboratory test of 28 samples. In this 

investigation, the proposed predictive techniques were 

applied to the prepared training and testing datasets 

generated by 5-fold cross-validation.  

The proposed SOS-SVR was further compared for 

performance outcomes by using four different 

performance measures (R, RMSE, MAE, and MAPE) to 

obtain a comprehensive comparison of the applied 

predictive techniques. The findings showed that the 

proposed SOS-SVR achieved the best accuracy for all 

performance measures.  

This study presents a significant contribution to 

address the importance of the problem of early ages 

prediction of concrete strength. By accurately predicting 

the concrete behavior, the SOS-SVR assists the users 

and concrete designers in decision-making processes 

based on early strength test results. Analytical results 

indicate that SOS-SVR is the most reliable model for 

building accurate prediction behavior of concrete mix 

proportion at various early ages of strength. 
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