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Abstract –  

Automated recognition of building elements 
convey vital information for inspection, monitoring 
and maintenance operations in indoor environments. 
However, existing object recognition methods from 
point clouds suffer from problems due to sensor noise, 
occlusion and clutter, which are prevalent in indoor 
environments. This paper proposes an object 
recognition method based on thermal-mapped point 
clouds for building elements consisting of electrical 
systems and heating, ventilation, and air-conditioning 
(HVAC) components. The proposed processing 
pipeline involves data collection from a mobile robot 
using both laser scanners and a thermal camera 
where temperature mapping can be performed from 
thermal images to point cloud. Next, the ceiling 
region containing the building elements of interest is 
identified and extracted from the point cloud. 
Segmentation of peak and valley thermal intensity 
regions is carried out based on absolute and relative 
temperature threshold values. The identified point 
cloud clusters can be each associated with a building 
element and localized based on the cluster center. The 
proposed building element recognition method was 
validated with two sets of laser scan data collected in 
an indoor laboratory. Experimental results for 
detection of lighting elements and cooling elements 
showed that the method achieved an average of 100% 
precision, 90% recall, and 0.25m root mean squared 
error (RMSE). 
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1 Introduction 
 

Laser scanned data in the form of 3D point clouds 
has emerged in recent years as one of the primary 
methods of data collection from built environments as 
well as construction sites. Due to the large number of 
possible applications, laser scanning technology has 
rapidly improved in terms of scanning speed and 

accuracy [1]. 3D point clouds are advantageous because 
they contain valuable geometric information at a high 
resolution that can be used to perform semantic 
modelling [2], quality assessment [3], defect analysis [4], 
and asset management [5].  
 

Researchers in the field have explored various ways 
to automatically recognize building elements from 
unstructured point cloud data in order to reduce the 
manual effort required to annotate and label the point 
clouds. Examples of building elements that can be 
recognized are walls, ceilings, floors, doors, windows, 
and roofs [2][6]. In particular, recognition of planar 
structures such as walls and floors is a key component of 
robotic mapping of indoor environments [7]. Recognition 
of building elements is also highly relevant for Building 
Information Modelling (BIM) applications, which 
involve the creation of a BIM model representing the 
shape, identity, and relationships of scanned objects [8] 
[9][10]. However, point cloud data is often collected at a 
high volume which imposes high memory and 
processing requirements for automated point cloud 
processing algorithms due to the large number of points 
involved [11]. In addition, raw point cloud data collected 
from indoor environments is also known to suffer from 
sensor noise, occlusion, and clutter [12].  
 

In short, the requirement for automatic object 
recognition methods is increasing by using robots 
deployed in field operations. To address the need for 
more sophisticated building element recognition methods 
from point clouds, this study proposes a method using a 
combination of thermal images and laser-scanned point 
cloud to detect and localize electrical systems and 
heating, ventilation, and air-conditioning (HVAC) 
components. In general, the thermal information 
provides many advantages because people can be 
detected easily both indoor and outdoor environments. 
Also, the point cloud offers 3D geometric data. 
Therefore, the 3d point cloud with thermal data can 
observe a sort of concealed objects such as heating pipes 
as well as structural properties such as defects. The 
method relies on the heat signature emitted by these 
building elements to accurately extract and identify the 
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building elements from a thermal-mapped point cloud. 
This is because regions in the point cloud with high 
thermal intensity can be attributed to lighting elements 
whereas regions with low thermal intensity can be 
attributed to cooling elements. The following sections 
will present an overview of the related work, 
methodology, results, discussion, and conclusion. 

2 Related Work 
 

Recognition of building elements from a job site 
can be performed through various different mediums 
such as visual images [13][14][15][16], thermal images 
[17], [18], and laser-scanned point clouds [2][6]. Each 
sensory medium has its own advantages and 
disadvantages when applied to the task of object 
recognition. For example, 2D-based sensing is 
vulnerable to changes in view angle, lighting conditions, 
as well as cases with multiple occluding objects [19]. On 
the other hand, 3D-based sensing requires a 
computationally intensive registration step to combine 
scan data [20] and is also subject to clutter and point 
density variations [21]. The following subsections 
summarize the common techniques that are used for 
object recognition from point clouds and thermal images 
respectively. 

2.1 Object recognition from point clouds 
Object recognition methods from point clouds 

rely on geometric information from point samples to 
infer semantic properties of the unknown object. For 
objects that exhibit primitive shapes such as walls and 
floors, simple geometric reasoning can be used to 
identify these components in a point cloud [2], [6]. For 
objects that exhibit complex geometry, one possible 
method is to use a lower dimensional feature 
representation of the point cloud in a vector form known 
as a descriptor [22]. A 3D descriptor can be calculated 
based on histograms of orientations [23], curvatures [24], 
or length and area statistics [25]. Additionally, when a 
computer-aided design (CAD) model of the target object 
is available, object recognition can be performed by 
directly registering the CAD model with the point cloud 
object and examining the registration error [11]. 
Alternatively, the 3D data can be projected into a 2D 
form to take advantage of existing 2D recognition 
algorithms [26]. 

2.2 Object recognition from thermal images 
There are various methods for recognizing objects from a 
thermal image. Treptow et al. [27] used an elliptical 

model with particle filter to identify the contours of a 
person from the thermal images. This method shows that 
accurate detection at high frame rates, but it only works 
for one person with the highest measurement probability. 
Similarly, Socolinsky et al. [28] revealed that performing 
facial recognition by using thermal image is more 
accurate than visual image because of high invariance to 
illumination condition. However, these studies focused 
on 2D thermal imaging for the small objects and did not 
consider global perception at the entire space. To solve 
the problem of detecting multiple objects from a single 
image, Davis et al. [29] used the technique of contour 
enhancement. This technology successfully detects 
multiple objects on a thermal image over a wide range of 
environmental conditions. It is also robust with respect to 
object shape and can extract silhouettes such as people, 
dogs and vehicles. However, it only generates an 
overview of the detected objects and does not explicitly 
indicate the meaning of each object. To detect building 
elements, Balaras and Argiriou [30] used thermal 
infrared imaging for inspecting of building elements. 
Also, Freitas et al. [31] used infrared thermography for a 
rapid non-destructive diagnosis of building envelopes. 
However, their work only 2D thermal images so that it 
might be easy to detect where energy leaks and perform 
diagnotics, but difficult to identify the shape for object 
recognition. 

3 Methodology 
The task of recognizing building elements from 

thermal-mapped point clouds can be divided into three 
steps: (i) collect data from a mobile robot, (ii) perform 
thermal mapping for the point cloud data, and (iii) 
perform recognition of building elements. Each step will 
be described in detail in the subsections below: 

3.1 Data collection from a mobile robot 
A robotic system, as shown in Figure 1, is used to 

acquire map information from the environment in the 
form of point cloud data as well as thermal images. The 
robotic system consists of a hybrid scanning framework 
with 4 units of SICK laser scanners [32] and one thermal 
camera (640 x 480 pixels) [33] mounted on a rotating 
body. The laser scanners used are line laser scanners 
with a horizontal resolution of 0.072 degrees and a 
vertical resolution of 0.167 degrees. It performed scans 
150º horizontally and 190º vertically. Therefore, the total 
number of collected points was around 1,000,000. The 
infrared camera is able to capture 25 degrees in the 
horizontal direction and 18 degrees in the vertical 
direction at a time; therefore, at least six panning 
movements are required to cover 150 degrees. In this 
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experiment, three tilting movement are applied to cover 
54 degrees vertically. 

 

 
 

Figure 1: Sensor setup for the robotic system 

3.2 Thermal mapping for point cloud data 
The following subsection describes how to 

combine the acquired point cloud data with thermal 
images. The process works by mapping each 3D point in 
the point cloud, (x, y, z) to 2D homogenous image 
coordinates (u, v, w) in thermal images and extracting 
the temperature information from that pixel location 
(Equation 1). The camera extrinsic matrix, which 
contains a rotation term, R and a translation term, T, 
maps 3D points from the world coordinate frame to the 
camera coordinate frame. This matrix can be determined 
by the position and orientation of the thermal camera 
when each thermal image is captured. On the other hand, 
the camera intrinsic matrix, K, describes the mapping 
between 3D points in camera coordinates to 2D points in 
image coordinates. This matrix is shown in Equation 2, 
where fx and fy are the focal lengths in the x and y axes 
whereas (cx, cy) is the image center. The values of these 
parameters can be obtained by a camera calibration 
process.  
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The panoramic view of the laser scanned point cloud 
can be created directly using the angular coordinates of 
each point. Equation 3 parameterizes the mapping from 

the points of 3D camera coordinates (u, v, w) to its 
corresponding points on the panoramic view (x, y) 
where x, y are the image coordinates of the projected 
point cloud. 
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3.3 Recognition of building elements 
After a thermal-mapped point cloud is acquired, 

building elements of interest can be detected and 
localized from the point cloud. First, the point cloud is 
subdivided into different subsections based on the z-
value, which is the height. The subsection with the 
largest z-value, which represents the ceiling region, is 
extracted from the point cloud. An example of such an 
extracted subsection is shown in Figure 2. 

 

 
 

Figure 2: Subsection of a building point cloud 
consisting of the ceiling region 

 
Next, the thermal information contained in the 

point cloud is used to identify heat-emitting objects, 
which in this case are lighting elements, as well as heat-
absorbing objects, which in this case are cooling 
elements. The main idea is to identify regions in the 
point cloud which constitutes peaks (high intensity) or 
valleys (low intensity) in terms of the temperature. This 
is achieved by using a combination of absolute 
thresholds and relative thresholds. An absolute threshold 
is a fixed value that applies to the entire point cloud. On 
the other hand, a relative threshold is applied by 
comparing the ratio of the temperature of a point to the 
temperatures of the neighbouring points. This helps to 
overcome the problem of non-uniform distribution of 
temperature across the point cloud. Then, points which 
have temperatures greater than a predetermined upper 
threshold will be considered as occupying peak regions 
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whereas points which have temperatures less than a 
predetermined lower threshold will be considered as 
occupying valley regions. This is illustrated in Figure 3, 
where thermal intensity peak and valley regions are 
highlighted with respect to the original point cloud. 

 

 
(a) 

 

 
(b) 

 
Figure 3: Thermal intensity (a) peak and (b) valley 

regions highlighted in red. 
 

Finally, the peak and valley regions are 
subdivided into individual elements using a 
clustering algorithm. The clustering algorithm works 
by randomly sampling seed points and expanding 
individual clusters by incrementally assigning points 
which are geometrically close to each other to be part 
of the same cluster. This procedure is repeated until 
all points are assigned to a unique cluster. However, 
clusters with less than 50 points are filtered out since 
it is assumed that clusters which are too small do not 
originate from building elements but are a result of 
noise in the data. A visualization of this step is shown 
in Figure 4, where individual point cloud clusters are 
highlighted in different colours. Each point cloud 
cluster is considered a prediction of a building 
element and the centroid of the point cloud cluster is 
taken to be the centroid of the predicted building 

element. 
 

 
(a) 

 

 
(b) 

Figure 4: Point cloud clusters of detected building 
elements: (a) lighting elements and (b) cooling 

elements 

4 Results 
 

The proposed method is evaluated with laser-
scanned point clouds of an indoor laboratory in 
Georgia Institute of Technology. Two different laser 
scans were collected from the site. The thermal 
mapping process described in Section 3.2 was used to 
map the temperature information from thermal 
images to the point cloud. Figure 5 shows the 
resulting thermal-mapped point cloud in an indoor 
lab setting.  
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Figure 5: Thermal-mapped point cloud in an indoor 

lab setting 

 
Next, the method proposed in Section 3.3 was 

used to detect and localize lighting elements and 
cooling elements. The accuracy of the proposed 
building element recognition method is evaluated with 
three different metrics. The precision metric measures 
the number of correct predictions of building elements 
compared to the total number of predictions made. The 
recall metric measure the number of correct predictions 
of building elements compared to the actual number of 
building elements present in the original scene. The 
root mean squared error (RMSE) metric measures the 
distance error between the centroid of a predicted 
building element and the ground truth centroid which is 
obtained manually. Table 1 shows the precision, recall, 
and RMSE results for lighting and cooling elements in 
two different laser scans (labelled A and B 
respectively). 
 
 

Table 1: Precision, recall and RMSE for each 
building element 

 
Building 
element Precision Recall 

RMSE 
(m) 

Lighting A 1.00 0.86 0.146 

Cooling A 1.00 1.00 0.098 

Lighting B 1.00 0.75 0.277 

Cooling B 1.00 1.00 0.489 

5 Discussion 
The performance of the proposed recognition 

system can be analysed with respect to the precision, 
recall, and RMSE metrics. Table 1 shows that the 

proposed method is able to achieve perfect precision in 
terms of the building elements that are recognized. This 
is because the combination of thermal information and 
geometric information helps to eliminate false positives 
and the resulting detections can be labelled as building 
elements with high confidence. However, in the case of 
recall rates, the method only achieves around 80% for 
lighting elements. This is due to the fact that the laser 
scan data collected is non-uniform in resolution. For 
regions in the point cloud that are far away from the laser 
scan origin, the point cloud resolution is low and the 
thermal mapping process is error-prone. Thus, building 
elements that are located far away from the laser scan 
origin tend to result in missed detections. Finally, the 
results for RMSE showed that the proposed method can 
localize building elements to within about 0.25m of the 
ground truth. The high RMSE value for the “Cooling B” 
test set is due to an outlier where the low temperature 
region is mistakenly assigned to an adjacent patch so the 
predicted centroid is inconsistent with the ground truth 
centroid. 

6 Conclusion 
 

This research proposes a method for recognizing 
building elements from thermal-mapped point clouds 
based on regions of high and low thermal intensity. The 
proposed processing pipeline involves data collection 
from a mobile robot using both laser scanners and a 
thermal camera where temperature mapping can be 
performed from thermal images to point cloud. Next, 
the ceiling region containing the building elements of 
interest is identified and extracted from the point cloud. 
Segmentation of peak and valley thermal intensity 
regions is carried out based on absolute and relative 
temperature threshold values. The identified point cloud 
clusters can be each associated with a building element 
and localized based on the cluster center. The proposed 
building element recognition method was validated with 
two sets of laser scan data collected in an indoor 
laboratory using the metrics of precision, recall and 
RMSE. Experimental results showed that the method 
achieved perfect precision, which means that there are 
no false positive results. In addition, a promising 90% 
recall rate and 0.25m RMSE was achieved as well. 
Future work in this area would involve increasing the 
types of building elements that can be recognized as 
well as quantifying the accuracy on a larger dataset. 
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