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Abstract -
Nowadays, the construction industry is probably the least

productive and most dangerous among the various industry
sectors. Given this scenario, it is quite clear that the introduc-
tion of Autonomous Construction Machines (ACMs) could
represent a great opportunity to improve both productivity
and safety. To this purpose, a fundamental problem that has
to be tackled is trajectory planning. In the last 15 years, sev-
eral sample-based algorithms have been proposed, that relies
on Joint-Space sampling. Unfortunately, this feature often
results in trajectories that are quite counterintuitive from
the point of view of a human being. In this work we propose
“cart-RRT”, a Cartesian-Space randomized algorithm that
improves the intuitiveness of the output trajectory, while en-
suring both its safety (in terms of collision avoidance) and its
feasibility.
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1 Introduction
Nowadays, in the construction industry, several opera-

tions that require both high power and high accuracy (such
as panel positioning, plumbing, material handling) are still
manually performed by human workers, in very inefficient
and dangerous ways. After a thorough field investigation,
we believe that the construction industry could definitely
benefit from the introduction of Autonomous Construction
Machines (ACMs), in terms of increased productivity and
human workers’ safety. Among the huge number of func-
tionalities that are required to develop an ACM, motion
planning plays a fundamental role. As a matter of fact, the
planner has the responsibility to compute a trajectory that
allows the ACM to travel from its original configuration to
a desired one, while satisfying kino-dynamic constraints
and avoiding collision with obstacles.
Given the fact that robots are complex systems, of-

ten characterized by nonlinear dynamics and actuation
constraints, the problem of trajectory planning can eas-
ily become computationally intractable. For this reason,
randomized sample-based planning algorithms [7] have
emerged as a reliable and appealing alternative to search-
based planning techniques [9] and model predictive con-

trol approaches [14]. Randomized sample-based planners
like Rapidly-exploring Random Trees (RRT) [8] have ex-
perienced a growing popularity since their introduction in
the late ’90s. The main reason behind this success relies in
a rather simple, yet effective idea: sample multiple robot
configurations that do not entail collisions with obstacles
and connect them to build either a graph or a tree of feasible
trajectories. Then, a solution is extracted from this tree (or
graph), in terms of a sequence of edges that connect cou-
ples of nodes. Furthermore, it has been demonstrated in
[1] that sample-based planning algorithms are probabilis-
tically complete. Even though they have been originally
introduced to solve the trajectory planning problem for
holonomic robots, RRT-based algorithms have been ex-
tended to tackle more complex problems, like for instance
the optimal and constrained trajectory planning. Several
solutions have been proposed in the last few years, includ-
ing optimal and non-linear RRTs [2], Rapidly-exploring
Random Graphs (RRG), and RRT* [5, 4]. Several ap-
proaches have also been proposed to solve the optimal
and constrained trajectory planning problem for arbitrary
kino-dynamic systems, like for instance [3, 11, 12, 13].

A typical feature of all these randomized planning al-
gorithms consists in sampling the nodes directly in the
robot Configuration-Space, also known as Joint-Space.
Unfortunately, Joint-Space randomized algorithms tend to
output quite counterintuitive trajectories from the point of
view of a human being. Given the fact that in construction
sites humans and machines usually work side-by-side, and
considering the results presented in [15], it is clear that
the intuitiveness of the planned trajectories can have a
strong impact on the comfort, the productivity and the
level of safety perceived by human workers sharing their
workspace with ACMs. In order to avoid these draw-
backs, a possible solution is represented by addressing the
motion planning problem directly at the Cartesian-Space
level. We here propose “cart-RRT”, a Cartesian-Space
randomized algorithm that allows the tree to be extended
directly towards the goal, as it has been originally pro-
posed in [6]. In cart-RRT edges are computed as linear
segments in the Cartesian-Space and the corresponding
joint positions profiles are determined using Inverse Kine-
matics. Once the tree reaches the goal, a path shorten-
ing procedure is performed to reduce the length of the
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output trajectory while keeping it collision-free. Then, a
spline-based interpolation is used to eliminate Joint-Space
velocity discontinuities. Finally, kinematic scaling is ap-
plied to guarantee that joint velocities do not exceed their
lower and upper bounds. The proposed algorithm has been
tested and validated in multiple simulated scenarios, using
the model of a UR10 manipulator as test bench.

2 Proposed Algorithm
One of the fundamental features of cart-RRT is the

fact that nodes are computed as linear segments in the
Cartesian-Space. In order to draw linear edges in the
Cartesian-Space, while computing their counterpart in
Joint-Space, the algorithm relies on the following data-
structures:

• node: the basic element of the random tree. It is de-
fined by: a set of joint positions q, the corresponding
Cartesian pose p, and a reference to its parent node
within the tree npar ;

• edge: the element that connects two distinct nodes.
It is defined by two matrices: Q and P that contain,
respectively, the series of intermediate Joint-Space
and Cartesian-Space poses visited by the robot while
traveling from the starting node to the destination
one;

• Tree: the random tree built by the algorithm. It con-
tains two main fields: a list of nodes named Nodes,
and a list of edges named Edges.

Algorithm 1 explains how the cart-RRT planner works.
initially, the tree only contains the starting node n0. Then,
following the approach originally proposed in [6], a ran-
dom selector is sampled to select between the two possible
extension modalities: random and goal-oriented. To this
purpose, the value of the parametric threshold “randth”
plays a fundamental role, since it affects the balance be-
tween exploration (random expansion) and exploitation
(goal-oriented expansion). Once the tree has been ex-
tended, the algorithms checks if the goal region “cartg”
has been reached. If the tree reaches the goal region
before its cardinality overcomes the value of the “maxN-
odes” parameter, the algorithm extracts a trajectory from
the tree (function “GetTrajectory”). Then, it applies a post-
processing technique (procedure “PostProcess”, whose de-
tails are given in Section 2.4) and, finally, it returns the
output trajectory. Otherwise, the algorithm returns a fail-
ure (i.e. a “null” value ).

2.1 Tree Extension

The two procedures that allow to extend the random tree
are detailed in Algorithms 2 and 3. The first procedure

Algorithm 1 cart-RRT Algorithm pseudo-code
1: Global Parameters: randth , maxNodes
2: procedure cart-RRT(n0, cartg)
3: Tree.Nodes← n0
4: Tree.Edges← ∅
5: while (|Tree.Nodes| ≤ maxNodes)
6: rand← RAND (0, 1)
7: if (rand ≤ randth)
8: Tree← ExtendRandomly (Tree)
9: else
10: Tree← ExtendTowardsGoal

(
Tree, cartg

)
11: end if
12: if

(∃ n ∈ Tree.Nodes =⇒ FKine (n.q) ∈ cartg
)

13: trajectory← GetTrajectory (Tree)
14: trajectory← PostProcess (trajectory)
15: return trajectory
16: end if
17: end while
18: return null
19: end procedure

implements the standard RRRT extension strategy, while
the latter tries to establish a series of nodes connecting the
tree directly with the goal region.

Algorithm 2 Random extension procedure
1: Parameters: maxLength
2: procedure ExtendRandomly(Tree)
3: nrnd ← RandomSampling ()
4: nnear ← NearestNode (Tree.nodes, nrnd)
5: nnew ← GetNewNode (nnear, nrnd,maxLength)
6: edge← EdgeCalc (nnear, nnew)
7: if (edge , null)
8: nnew .npar ← nnear
9: Tree.Nodes← Tree.Nodes ∪ nnew
10: Tree.Edges← Tree.Edges ∪ edge
11: end if
12: return Tree
13: end procedure

2.2 Edge Calculation

One of the fundamental features of cart-RRT is the
fact that nodes are computed as linear segments in the
Cartesian-Space. Given two distinct nodes in the tree, the
connecting edge is computed according to Algorithm 4.
Starting from the first node, the procedure iteratively ap-
plies differential inverse kinematics in order to reach the
destination node. Intermediate Joint-Space and Cartesian-
Space positions are stored in the output variable “edge”.
A threshold distance (parameter “edgeThresh”) is set in
order to exit the procedure once a given neighborhood of
the destination node is reached. The procedure returns a
failure in two distinct cases: whenever a kinematic sin-
gularity is encountered and in case the inverse kinematics
does not converge after a given number of iterations (pa-
rameter “edgeCountMax”).
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Algorithm 3 Goal-oriented extension procedure
1: Parameters: maxLength
2: procedure ExtendTowardsGoal(Tree, cartg)
3: nrnd ← SampleFromGoal

(
cartg

)
4: nold ← NearestNode (Tree.nodes, nrnd)
5: while (1)
6: nnew ← GetNewNode (nold, nrnd,maxLength)
7: edge← EdgeCalc (nold, nnew)
8: if (edge , null)
9: nnew .npar ← nold
10: Tree.Nodes← Tree.Nodes ∪ nnew
11: Tree.Edges← Tree.Edges ∪ edge
12: if

(
FKine (nnew .q) ∈ cartg

)
13: return Tree
14: else
15: nold ← nnew
16: end if
17: else
18: return Tree
19: end if
20: end while
21: end procedure

Algorithm 4 Edge calculation procedure pseudo-code
1: Parameters: edgeThresh, edgeCountMax
2: procedure EdgeCalc(n0, n f )
3: edge.Q← ∅
4: edge.P ← ∅
5: reached← 0
6: counter← 0
7: q = n0.q
8: while (reached = 0)
9: if (counter > edgeCountMax)
10: return null
11: end if
12: edge.Q← edge.Q ∪ q
13: edge.P ← edge.P ∪ p
14: p = FKine (q)
15: ∆p = n f .p − p
16: if (‖∆p‖ < edgeThresh)
17: reached← 1
18: else
19: if (det (J (q)) ≈ 0)
20: return null
21: else
22: q = q +

(
J (q)−1

∆p
)

23: end if
24: end if
25: counter← counter + 1
26: end while
27: return edge
28: end procedure

Figure 1. Minimum distance between two capsules.

2.3 Collision Checking Strategy

One of the fundamental element of every sample-based
planning algorithm (and also one of their major bottle-
necks) is represented by the collision-checking strategy.
As a matter of fact, directly taking into account the com-
plex geometry of a robot and of generic obstacles would
almost surely result in enormous computation time spent
on checking possible collisions. For this reason, a capsule-
based geometric model of both the robot and the obstacles
has been adopted. We chose capsules since they represent
a quite simple (yet effective) tool tomodel complex geome-
tries without being too conservative. To define a capsule
only two points in the Cartesian Space and a radius are
needed. The main computational advantage provided by
capsules is represented by the fact that to compute the
minimum distance between two capsules it is sufficient to
compute the minimum distance between the two segments
P0-P1 (that can be determined analytically) and then sub-
tract the radius of each capsule, as it is shown in Figure 1.
Moving back to our algorithm, every time a new edge is
computed the “CollisionCheck” (see Algorithm 5) proce-
dure is invoked to verify if the motion of the entire robot
along the edgemay cause collisionswith the obstacles. For
the sake of clarity, the “RobotCapsules” function is respon-
sible for computing the capsule-based geometry model of
the manipulator, see for instance Figures 3(a)-3(c).

2.4 Trajectory Post Processing

As soon as the tree reaches the goal region, the se-
quence of nodes connecting the starting configuration to
the final one is extracted from the tree and a three-stage
post-processing procedure is performed:

1. Path Shortening: according to the algorithm pro-
posed in [10], two distinct configuration are sampled
along the trajectory. Then, the edge connecting the
two sampled configurations is computed and checked
for collisions. In case the edge is collision-free, the
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(a) Path Shortening

(b) Spline Interpolation

Figure 2. Trajectory post-processing stages: origi-
nal trajectory (dashed red), post-processed trajectory
(solid green), obstacles (yellow capsules) and gaol
region (red cube).

Algorithm 5 Collision checking procedure pseudo-code
1: procedure CollisionCheck(edge, obstCaps)
2: collFree← 1
3: for all q ∈ edge.Q
4: robCaps← RobotCapsules (q)
5: for all rCap ∈ robCaps
6: for all oCap ∈ obstCaps
7: minDist← MinDistance(rCap, oCap)
8: if (minDist < 0)
9: collFree← 0
10: end if
11: end for
12: end for
13: end for
14: return collFree
15: end procedure

trajectory is modified by inserting the new edge be-
tween the two sampled configuration. This proce-
dure is repeated until a given number of iterations is
reached. As a matter of fact, this path shortening pro-
cedure results in an a-posteriori optimization of the
trajectory in the Cartesian Space. This approach can
be thought as a convenient alternative with respect
to tree optimization strategies normally exploited by
optimal algorithms. An example of path shortening
is shown in Figure 2(a);

2. Spline Interpolation: a series of evenly spaced con-
figurations are selected along the trajectory to be used
as via points for a cubic spline interpolation. In this
way, sharp corners due to the connection of linear
Cartesian-Space edges can be removed, ensuring that
the trajectory belongs to the C2 class of functions.
An example of spline interpolation is shown in Fig-
ure 2(b);

3. Kinematic Scaling: up to this point the trajectory
is computed taking into consideration a virtual time
coordinate τv , ranging from 0 to 1. In this stage, joint
positions are differentiated to find joint velocities and,
in turn, joint accelerations. Then, a time-scaling pa-
rameter kτ is computed to ensure that both joint ve-
locities and accelerations do not exceed the imposed
upper and lower bounds. Consequently, a real time
coordinate τr can be computed as: τr = kττv .

3 Simulation Results
In order to validate the cart-RRT algorithm, a MAT-

LAB implementation has been developed and a simulated
UR10 manipulator has been considered as test bench. As
far as actuation limits are concerned, we took into consid-
eration the maximum and minimum joint velocities and
accelerations displayed in Table 1. In order to resemble
the operations that an ACM could possibly perform in an
actual construction yard, a pick-and-place task involving
a panel has been chosen. Then, the three simulation sce-
narios pictured in Figure 3 have been designed. More in
depth:

• Scenario #1 (grasping panel “easy”), where the robot
has to reach the goal region, while avoiding three
obstacles. See Figure 3(a);

• Scenario #2 (grasping panel “difficult”), similar to
Scenario #1, with an additional obstacle. See Figure
3(b);

• Scenario #3 (depositing panel), where the robot has
grasped the panel and has to deposit it in the goal
region. See Figure 3(c);
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Table 1. UR10 Actuation Limits
Joint Ûqmin Ûqmax Üqmin Üqmax

[◦/s] [◦/s]
[◦/s2] [◦/s2]

1 -120 +120 -20 +20
2 -120 +120 -20 +20
3 -180 +180 -20 +20
4 -180 +180 -20 +20
5 -180 +180 -20 +20
6 -180 +180 -20 +20

For the sake of clarity, in each scenario the robot is repre-
sented in its starting configuration with links pictured with
solid black lines and the corresponding capsules drawn in
blue. On the other hand, capsules representing the obsta-
cles are shown in yellow. The goal region is highlighted
with a red cube and the panel is pictured with green lines
and capsules. Finally, the Cartesian reference frames cor-
responding to the robot base, the robot end-effector and
the Cartesian goal are pictured with red (X), green (Y) and
blue (Z) dashed lines. Examples of possible solutions are
shown in Figures 3(d)-3(f), thus demonstrating the effec-
tiveness of the proposed algorithm. Furthermore, Figure
4(a) and 4(b) shows the joint velocity and acceleration
profiles, respectively. These data clearly prove that the
kinematic scaling procedure correctly scales the trajectory
in order to always satisfy the aforementioned actuation
bounds.

3.1 Comparative Evaluation

To properly assess the cart-RRT algorithm in terms of
effectiveness, efficiency, and intuitiveness of the output,
a comparative evaluation against state-of-the-art alterna-
tives has been performed. More in depth, we took into ac-
count the following planning algorithms: RRT [7], RRT*
[5] and SJRRT [6]. Similarly to cart-RRT, the selected
state-of-the-art algorithms have been modified to return a
failure if the maximum cardinality value (set to 500 nodes)
is reached without finding a solution. For the sake of com-
pleteness, notice that SJRRT has been modified by remov-
ing the resolution of the kinematic redundancy, since the
UR10 is not kinematically redundant. Five thousand sim-
ulations have been performed for each algorithm in each
scenario in order to collect statistically significant data-
sets. In the following, the results of these simulations are
presented and discussed. More in detail, Figures 5(a)-5(c)
contain histograms that represent the average success rate
of the different algorithms, with respect to each scenario.
On the other hand, Figures 5(d)-5(f), Figures 5(g)-5(i),
and Figures 5(j)-5(l) show box plots representing execu-
tion time, tree cardinality, and linear length of the output
trajectory, respectively.
As regards the success rate, it is clear that cart-RRT

and SJRRT perform consistently better than the others
algorithms in all the considered scenarios. This situation

is almost surely determined by the possibility to extend
the random tree directly towards the goal. Moreover, it is
worth noticing that RRT*was not able to provide solutions
in scenario #3. Moving to the execution time, in Scenarios
#1 and #3 cart-RRT and SJRRT are the fastest algorithms
able to find a solution. On the other hand, in Scenario
#2, the execution time of cart-RRT is significantly greater
than the one of SJRRT and it is also greater than the one
of RRT. Not surprisingly, RRT* is the slowest algorithm
to converge in all the scenarios, since it optimizes the
random tree at each iteration. Moving to tree cardinality,
it is quite clear that cart-RRT and SJRRT are able to find
solutions without having to reach the maximum allowed
tree cardinality, as RRT normally does. As far as RRT*
is concerned, the tree cardinality is always equal to the
maximum, since the algorithm keeps adding nodes to the
tree in order to optimize the output trajectory. Finally, if
we take into consideration trajectory length, we can state
that in Scenario #1 the outputs of cart-RRT, RRT* and
SJRRT can be considered similar, while RRT finds longer
trajectories. In Scenario #2, RRT* still provides very short
trajectories, while cart-RRT performsworse than RRT, but
better than SJRRT. In Scenario #3, finally, cart-RRT finds
significantly shorter trajectories with respect to RRT and
SJRRT.
Finally, in order to evaluate and compare the intuitive-

ness of the trajectories computed by the different algo-
rithms, a questionnaire has been designed and submitted
to 15 workers. For each scenario, the interviewed workers
were presented one example of output trajectory for each
algorithm. Then, they were asked to rate the intuitiveness
of each trajectory, i.e. its similarity with respect to the
trajectory they would have followed. Interviewed workers
were asked to rate each trajectory, by assigning a score be-
tween “0” (meaning very counterintuitive trajectory) and
“5” (i.e. very intuitive trajectory). Results were aggre-
gated and they are displayed in Figures 6, once again in
the form of box plots. The comparison clearly demonstrate
that the outputs of cart-RRT and RRT* (if present) are
considered much more intuitive by the interviewed work-
ers with respect to the outputs of RRT and SJRRT. To sum
up, cart-RRT guarantees much better performances than
RRT* in terms of success rate and execution time, while
RRT* is able to provide shorter trajectories only in Sce-
nario #2. Consequently, we can state that our algorithm
represents a promising solution to the motion planning
problem for ACMs sharing their workspace with human
workers in actual construction yards.

4 Conclusions and Future Developments
In this work, an innovative Cartesian-Space randomized

algorithm, named cart-RRT, is proposed. It consists in a
modified version ofRRTand it is able to providemore intu-
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(a) Scenario #1 - grasping panel “easy” (b) Scenario #2 - grasping panel “diffi-
cult”

(c) Scenario #3 - depositing panel

(d) Scenario #1 - grasping panel “easy” (e) Scenario #2 - grasping panel “diffi-
cult”

(f) Scenario #3 - depositing panel

Figure 3. Simulation scenarios and examples of solutions.

(a) Joint velocity profiles

(b) Joint acceleration profiles

Figure 4. Example of solution for Scenario #1.

itive output trajectories thanks to two distinct features: the
fact that nodes are sampled directly in the Cartesian-space,
and the possibility to extend the tree directly towards the
goal. Furthermore, the algorithm ensures that the output
trajectories are collision-free and consistent with respect
to actuation constraints. The effectiveness of the proposed
approach is demonstrated in multiple simulated scenarios.
Moreover, a comparative analysis of the results obtained
by our algorithm with respect to the ones produced by
other state-of-the-art planners is shown. In the end, not
only we demonstrate that the efficiency of our algorithm
is comparable with respect to state-of-the-art alternative,
but we can also state that our algorithm is able to provide
more intuitive trajectories with respect to state of the art
planners, from the point of view of a human construction
worker. At the moment, the most promising future de-
velopment is represented by the possibility to extend this
algorithm to the case of kinematically redundant ACMs. A
study will be conducted to investigate how extra-DoFs can
be used in order to improve optimality and safety (in terms
of distance with respect to the obstacles) of the resulting
trajectory.
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(a) Sc. #1 - Success Rate (%) (b) Sc. #2 - Success Rate (%) (c) Sc. #3 - Success Rate (%)

(d) Sc. #1 - Execution time (s) (e) Sc. #2 - Execution time (s) (f) Sc. #3 - Execution time (s)

(g) Sc. #1 - Tree cardinality () (h) Sc. #2 - Tree cardinality () (i) Sc. #3 - Tree cardinality ()

(j) Sc. #1 - Trajectory lenght (m) (k) Sc. #2 - Trajectory lenght (m) (l) Sc. #3 - Trajectory lenght (m)

Figure 5. Comparative evaluation results
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(a) Scenario #1 (b) Scenario #2 (c) Scenario #3

Figure 6. Evaluated intuitiveness of the output trajectory
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