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Abstract –  

Recently, the importance of reducing embodied 

carbon has become clear. The construction stages, is 

the stage where the building production takes place, 

and a large quantity of embodied carbon is emitted. 

However, because this stage presents a variety of 

sources of uncertainty at building sites, it is difficult 

to compute and predict precise CO2 emissions. To 

solve this problem, existing research has estimated 

emissions amounts by considering the variability of 

the main materials' carbon emission factor, as well 

as the variability of the equipment's activity 

conditions. However, these approaches are unable to 

reflect uncertainty at activity level, leading to an 

underestimation of CO2 emissions. In this research, 

we perform an analysis by considering the 

uncertainty of CO2 emissions in the construction 

stage at activity level. In addition, from the results, 

we recognize the relevance of considering 

uncertainty for each activity. Therefore, we present 

a CO2 emission prediction method using a Monte 

Carlo simulation and confirm its effectiveness. We 

believe that the outcome of this research advocates 

for the necessity of considering the uncertainty in 

each activity and contributes to the prediction and 

management of on-site emissions. 
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1 Introduction 

Recently, as operational carbon emissions (OC) have 

been reduced, it has gradually become clear that it is 

important to reduce the embodied carbon emissions 

(EC), which occur latently during the production, 

construction, maintenance and discarding of building 

materials [1]. The construction stage is a good example 

of the seriousness of EC. In this stage, 10 to 30% of the 

materials’ lifetime CO2 are emitted within a relatively 

short time [2]. In addition, the construction stage is the 

stage in which the usage of the building materials is 

completed, and thus, mechanical equipment and 

materials are used, causing a large amount of CO2 

emissions.  

However, the CO2 emissions that occur in the 

building construction stage are difficult to compute and 

predict accurately due to various sources of uncertainty 

that are present at a building site [3]. Choosing and 

managing goals of CO2 emission reduction based on 

uncertain prediction values cause problems in meeting 

these goals [4]. To solve this problem, existing research 

has estimated emissions amounts by considering the 

variability of the main materials' carbon emission 

factors, as well as the variability of the equipment's 

activity conditions. However, these approaches are 

based on resources, not based on activity, so it is 

possible that the CO2 emissions will be underestimated. 

Furthermore, another limitation is the suggestion of only 

piecemeal reduction methods such as a reduction or 

replacement of input resources. 

To address those limitations, in this research, we aim 

to analyze the construction stage CO2 emissions' 

uncertainty at activity level. We also aim to present a 

method that can use the analyzed uncertainty data to 

probabilistically predict CO2 emissions. 

We selected concrete construction as our research 

target, as it uses a large amount of material and has a 

high material carbon emission factor. For the 

uncertainty that can occur in concrete placement, 

measured equipment operating times of both the 

concrete pump and the concrete mixer truck were 

considered. These operating times were converted to 

CO2 emissions, and the uncertainty was analyzed by 

comparing the actual value and the planned emissions 

based on the equipment operation time. Finally, the 

analyzed data was used to derive a method to predict 

CO2 emissions, which is based on a Monte Carlo 

simulation, and their effects were verified. 
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2 Computing the construction stage CO2 

A deterministic emission calculation obtained by 

multiplying the CO2 emission factor and the amount of 

input material can cause problems due to uncertainty. 

Therefore, existing research has evaluated the 

uncertainty when estimating carbon emissions and then 

presented a prediction method that considers this. We 

reviewed several researches in terms of materials and 

equipment.  

Regarding materials, there is a research that 

considers the most used building materials to perform 

an analysis of statistical properties, and based on this, it 

probabilistically predicts the materials' construction 

stage emissions [4]. Another research analyzes the 

variability of emission factor of the most used materials 

based on accumulated greenhouse gas emissions, as 

well as energy emissions factor, in order to evaluate the 

uncertainty when estimating the emissions of apartment 

housing construction stage [5].  

Regarding equipment, there is a research on a 

simulation technique, which is developed to calculate 

CO2 emissions in a road paving work while considering 

the variability in the amount of fuel consumption 

according to engine load [6]. Similarly, another research 

uses a CYCLONE simulation to predict emissions 

probabilistically while considering the variability of fuel 

consumption according to the activity of earthwork 

equipment [7]. 

However, the above-mentioned research has the 

limitation of being mainly focused on materials and 

earthwork equipment. We perceived a lack of research 

on building construction equipment, which is a direct 

source of emissions at the building site. Also, we 

analyzed existing research is not considering uncertainty 

at activity level. Therefore, in this research, we evaluate 

uncertainty in CO2 emissions focusing on building 

construction equipment at activity level, and then 

present a prediction method that considers our analysis. 

3 Evaluating and analyzing uncertainty 

in CO2 emissions 

3.1 Measuring and analyzing equipment 

operation time 

To analyze the uncertainty sources in carbon 

emissions, we estimated fuel consumption according to 

measured equipment operation time and planned 

equipment operation time to obtain CO2 emissions, and 

then compared these values. To analyze at activity level, 

we measured on-site data about equipment operation 

times (Table 1). For the information of used equipment, 

we referred to the report from the Korea Specialty 

Contractors Association [8], which contains the 

standard measurements for construction machines in 

Korea(Table 2). 

We analyzed the measured equipment operation 

time in the following way. A single concrete mixer 

truck entering the site and leaving was set as one 

activity cycle. Our analysis did not include the start and 

end of the depositing work or the periods of time when 

the activity was suspended. In this research, we 

analyzed a total of 21 activity cycles. We then set the 

detailed activities for each piece of equipment. For the 

concrete mixer truck, we considered four activities; 

stopping after entering the site, waiting after stopping, 

pouring concrete, and leaving. For the concrete pump, 

only one activity was considered; pumping the concrete. 

Following this, we measured the equipment operation 

time for each activity, and obtained a total of 21 data 

sets with the five activities. 

However, the planned equipment operation time is 

not calculated for the defined activity units; therefore, in 

this research, we used several processes to estimate the 

values. For concrete pump cars, the time spent to digest 

the concrete (6m3) of a concrete mixer truck was 

calculated based on the average value of the pump 

amount per hour (87.5m3/hr) which isprovided in [8]. In 

the case of the concrete mixer truck, we did not present 

Table 1. Overview of measuring equipment operation time 

Components Contents 

Facility type 

and scale 

1 education research 

facility, 2 stories 

underground/6 stories 

aboveground 

Total area 22,910 m2 

Location 
Seongbuk-gu, Seoul, 

Korea 

Measurement 

target process 

Concrete slab 

placement work 

Data gathering 

date 
2017-3-10 

 

Table 2. Information of used equipment 

Used 

equipment 

Concrete 

mixer truck 

Concrete 

pump 

Type 6 m3 36 m  

Activity 

amount 
6 m3 80-95 m3/h 

Fuel 

efficiency(l/hr) 
13 17.7 

Fuel type Diesel Diesel 
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any specific activity time information, and assumed the 

average equipment operation time to be the planned 

equipment operation time (Table 3). 

3.2 Calculating emissions from equipment 

operation times 

This section describes the process for calculating 

CO2 emissions by estimating fuel consumption from 

equipment operation times. The fuel consumption for 

each activity was calculated via Equation (1). For the 

fuel efficiency, the equipment data presented in Table 2 

was used. The load factor reflects the equipment's fuel 

consumption according to the activity. We used the load 

factors analyzed in [7], and the load factors for each 

activity were Low (25%) for stopping after entering and 

leaving, Idle (10%) for waiting after stopping, and 

Accelerated (100%) for pouring concrete and pumping 

concrete. 

  

Fuel consumption (l) = Equipment operation time (s) × Fuel 

efficiency (l/hr) × Load factor (%) × 1/3600 (hr/s)                     (1) 

 

The fuel consumption calculated in Equation (1) was 

used along with Equation (2) to calculate the CO2 

emissions for each activity. In this research, we used the 

data provided in [9]; the oil conversion factor is 

0.000845, the fuel carbon emission factor is 0.837. Here, 

the constant of 44/12 is the ratio of CO2's molecular 

weight to carbon's atomic weight, and the constant of 

106 converts the emission unit from tons to grams.  

 

CO2 emissions (gCO2) = Fuel consumption (l) × Oil 

conversion factor (toe/T) × Fuel carbon emission factor 

(T×C/toe) × 44/12 (Carbon conversion) × 106(g/T)                   (2) 

 

3.3 Comparative analysis of emissions 

Through the process above, emissions based on 

measured times and emissions based on planned times 

were calculated. The results for the calculated emissions 

are shown in Table 4. The emissions based on measured 

time are shown along with descriptive statistic values 

for the emissions of each activity, whereas the 

emissions based on planned time are shown as specific 

values. 

From the data based on activity cycles, the 

calculated value present emissions based on planned 

time were around 3.0 kgCO2 more than the minimum 

and were 4.4 kgCO2 less than the maximum, 

respectively. In terms of error rate, the differences were 

-42.7% and 63.1% respectively. When we compare the 

average values for the emissions based on planned time 

and the emissions based on measured time, the error is 

around 5%, which is smaller than the difference 

between maximum and minimum. 

If emissions are predicted as deterministic values, a 

relatively accurate calculation with less than 5% error is 

obtained from the average values of the equipment data 

and measured data. However, this approach does not 

create acceptable predictions. As can be seen from the 

comparative results in Table 4, this is because the 

emissions obtained from measurements present a broad 

range of deviation. This can cause problems in 

managing emissions related to underestimation or 

overestimation of the CO2 emissions in the planning 

stage. Therefore, in order to make realistic emission 

predictions, we must consider the uncertainty of each 

activity. 

4 Predicting CO2 emissions using a 

Monte Carlo simulation 

4.1 Monte Carlo Simulation 

This section presents a method of predicting CO2 

emissions probabilistically by using a Monte Carlo 

simulation. The Monte Carlo simulation is one of the 

main techniques used in probabilistic analysis. It creates 

a probabilistic model of variables' uncertainty, and it 

Table 3. Measured equipment operation time and planned equipment operation time 

Activity 

Stopping 

after 

entering  

Waiting 

after 

stopping  

Pouring 

concrete  
Leaving  

Pumping 

concrete 
Cycle 

Average measured 

equipment operation time 

(Standard deviation) 

36.3 

(27.3) 

190.5 

(243.2) 

343.8 

(95.5) 

9.3 

(3.5) 

299.6 

(83.2) 

879.4 

(279.35) 

Planned equipment 

operation time 
36.3 190.5 343.8 9.3 246.9 826.8 

* The unit of all items is sec. 
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presents statistical results from simulated experiments 

[10]. These statistical results allow for more effective 

decision-making in situations where the effects of 

uncertainty are clear.  

In this research, we used the Crystal Ball program, 

which is an effective tool to execute Monte Carlo 

simulations. Crystal Ball supports probabilistic model 

analysis and simulation tests of the data needed for a 

Monte Carlo simulation. A method for making 

predictions using Crystal Ball follows the next steps. 

First, use Crystal Ball to perform a goodness of fit test 

on the data for the emissions based on measured time. 

To take the uncertainty at activity level into account, 

perform the goodness of fit test for each activity. Next, 

use the analyzed test result values to construct a model 

of the probability distribution for each activity. In 

addition, analyze the correlations between emissions for 

each activity in order to perceive the relation between 

the different activities. Finally, perform simulation tests 

that reflect the correlations in the constructed 

probability model, and analyze the results.  

4.2 Goodness of fit test 

For the goodness of fit test on the emission data 

obtained from the measured times, we used the 

Kolmogorov-Smirnov (K-S) test. When we compared 

the K-S test to the Anderson-Darling test, which is also 

a goodness of fit test, the former showed a more 

sensitive tendency in the median area of the distribution 

than the tail areas [11]. In this research, the K-S test was 

used to focus on the general situation where the number 

of observations is larger than the specific situation 

where the equipment operation time is measured long.In 

the test, we considered 14 types of probability 

distributions supported by the Crystal Ball program. 

The results of the test for each activity are shown in 

Table 5. Test values (D) were below the rejection value 

of 0.287 at a significance level of 0.05 when N was 21. 

Therefore, we accepted the null hypothesis of the K-S 

test, which means the emission data fit well in specific 

distributions. 

Analysis showed that the distributions for stopping 

after entering, waiting after stopping, and leaving 

activities follow a log normal distribution, whereas 

pouring concrete follows a logistic distribution, and 

pumping concrete follows an extreme value distribution. 

4.3 Correlation analysis 

To consider the relationship between activities’ 

emissions in the simulation test, we calculated their 

Pearson correlation factors. The emission correlation 

factors are shown in Table 6. Through the analysis, we 

found 4 significant relationships. 

First, the activities with the highest correlation were 

concrete pouring and concrete pumping, with an 

emission correlation coefficient of 0.854, which is a 

relatively high value. This correlation is present because 

the concrete is being poured and pumped at the same 

time. Second, leaving and waiting after stopping had a 

significant correlation value of 0.617. This is caused by 

the delays in the concrete pouring activity and delays in 

moving vehicles due to crowding around the concrete 

pump. Stopping after entering and concrete pumping 

had a correlation of 0.387, while stopping after entering 

Table 4. Calculation results for CO2 emissions according to equipment operation time 

Activity 

Stopping 

after 

entering 

Waiting 

after 

stopping 

Pouring 

concrete 
Leaving 

Pumping 

concrete 
Cycle 

Emissions 

for 

measured 

equipment 

operation 

time 

Average 85.1 178.4 3219.7 21.7 3819.7 7324.4 

Median 63.2 112.4 3118.4 18.7 3664.9 7220.7 

Standard 

Deviation 
64.0 227.8 894.2 8.1 1061.4 1877.2 

Kurtosis 12.4 5.7 1.6 1.8 -0.2 0.4 

Skewness 3.3 2.5 1.0 1.4 0.4 0.6 

Min. Value 44.5 9.4 1947.9 14.0 1879.6 3984.3 

Max. Value 334.8 889.6 5637.5 44.5 5903.4 11333.1 

Emissions for planned 

equipment operation time 
85.1 178.4 3219.7 21.7 3442.6 6947.5 

* The unit of all items except kurtosis and skewness is gCO2. 
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and concrete pouring had a correlation of 0.339, which 

are similar values. The reasons for these correlations are 

that parking and concrete pouring can be slowed down 

by the skill of the mixer truck driver, which also 

influences pumping.  

4.4 Simulation test results and analysis 

The simulation test was performed considering the 

probability distribution models obtained via the 

goodness of fit tests and the calculated correlation 

coefficients. In the simulation test, the results were 

obtained probabilistically by generating random values 

that consider the correlations for the probability 

distribution of a specific activity. The upper and lower 

bounds for the emissions can be determined by 

adjusting the confidence level. In this research, we 

executed the simulation test 10,000 times at a 95% 

confidence level. 

From the test results, Figure 1 shows the 

probabilities of the emissions that occur during a single 

activity cycle. The outcomes suggest that a log normal 

function is the most fitting probability distributions. An 

analysis of the results shows that the probability of 

emitting less CO2 than the planned emissions amount is 

46.2%, which means that the probability of obtaining 

more emissions than planned is higher. Therefore, we 

can see that for the planned emissions, the CO2 

emissions that occur during the activity are 

underestimated. 

Table 6. Results of analysis of correlation between activities 

 Activity 
Stopping after 

entering 

Waiting after 

stopping 

Pouring 

concrete 
Leaving 

Pumping 

concrete 

Stopping after 

entering 
1     

Waiting after 

stopping 
-0.040 1    

Pouring 

concrete 
0.339* -0.079 1   

Leaving 0.284 0.617** 0.140 1  

Pumping 

concrete 
0.387* -0.298 0.854** 0.110 1 

* Significant at 0.05 level of significance 

** Significant at 0.01 level of significance 

 

Table 5. Goodness of fit test results by activity 

Goodness of fit test (Kolmogorov-Smirnov test) 

Activity 
Stopping after 

entering 

Waiting after 

stopping 
Pouring concrete Leaving Pumping concrete 

Fit 

distribution 
Log normal Log normal Logistic Log normal Extreme value 

D 0.108 0.108 0.137 0.158 0.076 

* At a significance level of 0.05 when N = 21, the rejection value is 0.287 
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Figure1. Probability view of simulation results (based on activity cycle) 

Based on an activity cycle (Table 7), the lower 

bound for emissions was 4039.8 gCO2, and the upper 

bound was 11833.9 gCO2 at a confidence level of 95%. 

For each value, when the emissions were compared to 

those obtained from the planned equipment operation 

time, there was a 70.3% to - 41.9% difference. From 

this, it is possible to predict with 95% of confidence that 

the actual emissions will be within 70.3% to - 41.9% of 

the planned emissions. In addition, the average value of 

the simulation was 5.5% higher than the planned value, 

at 7324.8 gCO2. This gives a smaller error than the 

comparison with the bound values. 

From the results by activity (Table 7), concrete 

pouring and concrete pumping have lower kurtosis and 

skewness than other activities so they follow a gradual 

distribution, but they present a high emission ratio. In 

both activities, the equipment is practically working, so 

the load factor is high and the activity time is long and it 

causes high amount of emissions. In addition, we think 

that the activity timespan is determined by the 

equipment that present relatively uniform work speeds; 

therefore, the distribution is relatively gradual.  

On the other hand, in the case of stopping after 

entering, waiting after stopping, and leaving, the 

emission ratio is low but the kurtosis and skewness are 

both large. We consider that this result occurs because 

the activities load factor is low and the activity timespan 

is short. The reason for the kurtosis of these activities to 

be high is that they are relatively simple activities so 

they are often completed within a fixed amount of time. 

Sometimes, however, due to the delay in former activity 

and preparations for tasks, the activity timespan is 

extremely long. These extreme value causes an increase 

in the degree of skewness. 

Based on this analysis, reducing activity deviation 

and improving activity efficiency of equipment can be 

good methods to both increase prediction accuracy and 

reduce emissions. However, in order to consider 

uncertainty effectively, the activities must be considered 

from a management perspective. Looking at waiting 

after stopping, the emissions show a difference of more 

than five times with respect to the average. In addition, 

the difference between the upper and lower bound 

amounts to 87 times. That is, as the activities are being 

performed, certain activities have extreme time 

increases that can cause an increase in emissions and 

prediction error. Therefore, we believe that to increase 

prediction accuracy and reduce emissions, such 

activities must be well identified and managed.  
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5 Conclusion 

In this research, to analyze the uncertainty in CO2 

emissions in the construction stage at activity level, we 

gathered data about equipment operation time by 

activity and used this to analyze the related uncertainty. 

The results were used to show the need for considering 

uncertainty at activity level, as well as to propose a CO2 

emission prediction method using a Monte Carlo 

simulation and verify its outcomes. 

The conclusions obtained from this research are the 

following. First, we propose that in order to make a 

realistic prediction of CO2 emissions in the building 

construction stage, it is important to consider 

uncertainty at activity level. Second, we obtained a 

realistic emission prediction by presenting a 

probabilistic method of predicting CO2 emissions using 

activity data. Third, by analyzing emissions by activity, 

we presented a plan to increase the accuracy of 

emissions predictions and reduce emissions. 

We believe that the results of this research will 

emphasize the need for considering uncertainty at 

activity level and assist in the prediction and 

management of on-site emissions. In the future, we will 

consider plans at activity level and gather additional 

data at activity level in order to increase the accuracy of 

predictions and expand the use of the proposed method. 
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