
35th International Symposium on Automation and Robotics in Construction (ISARC 2018)

Supporting feature-based parametric modeling by graph
rewriting

S. Vilgertshofera and A. Borrmanna

aChair of Computational Modeling and Simulation, Technical University of Munich, Germany
E-mail: simon.vilgertshofer@tum.de, andre.borrmann@tum.de

Abstract –

Sophisticated geometric and semantic models are
the basis for many applications in the field of Building
Information Modeling. While the requirements in
terms of detail, flexibility and conformity on those
models and thus on the corresponding modeling tools
increase, especially in the case of parametric and
procedural modeling, open questions remain
regarding the support of the user during the modeling
process and the loss of modeling knowledge after
finishing a modeling task. Graph Theory can be used
when addressing these questions. It can be employed
to represent parametric models in a vendor-neutral
way and to capture modeling operations by
formalizing them in graph rewrite rules. This paper
describes the further development and generalization
of graph-based model creation for the support of
feature-based parametric modeling. We show how
such procedural 3D models that are based on two-
dimensional sketches can be represented by graphs
and how modeling steps can be formalized by using
rule-based graph rewriting. This approach enables a
user to semi automatically reuse previously
formalized modeling tasks, thereby supports and
accelerates the modeling process and, additionally,
allows the formal definition of expert engineering
knowledge for later use and reapplication.

Keywords –

Graph rewriting; Parametric modeling; Modeling
support

1 Introduction
Realizing the design and engineering of construction
projects successfully is a challenging process for all the
parties involved.

While even small and straightforward projects may
evoke complex issues, this is typically the case for large
projects in which various boundary conditions and
constraints as well as a vast number of participants from
different areas of expertise are involved.

The technological advancements developed
alongside the ongoing introduction of Building
information modeling have addressed those challenges
and support designers and engineers in their daily work
and their interdisciplinary communication. However, the
availability of sophisticated models containing geometry
as well as semantics are a major requirement for many
applications and workflows. Use scenarios such as
automated construction progress monitoring [1],
automated code compliance checking [2], automated cost
analysis or BIM-based generation of construction
schedules [3] would not be possible without underlying
BIM-models comprising various kinds of information.

The task of creating models is therefore an
indispensable prerequisite for the use cases mentioned
above as well as a large variety of additional scenarios.
The modeling of shield-tunnels, for example, can benefit
from geometric models comprising different Levels of
Detail (LoD) as introduced by Borrmann et al. [4]. To
avoid inconsistencies among the different LoDs, it is
necessary to apply parametric modeling techniques,
which allow the automatic preservation of the model’s
consistency across the different LoDs in case of
alterations. The research by Borrmann et al. has revealed
that the manual creation of consistency preserving
parametric product models is a very complex, time
consuming and error-prone task. An approach by
Vilgertshofer and Borrmann [5,6] introduces the
possibilities of using graphs and graph transformation to
support the necessary modeling process by formalizing
parametric 2D sketching operations and subsequent
procedural operations, which semi-automatically create
3D models for linear parts of shield-tunnel facility
models. In this context, “linear” denotes the part of the
model that rely solely on the course of the alignment, the
most important basis for infrastructure facilities ranging
over longer distances. Parts of the model which are
positioned at specific points on the alignment (crosscuts,
fire exit shafts, etc.) are called “non-linear”.

An overview of the concept of this existing approach
is shown in Figure 1, which conceptually illustrates how
a model is represented by a graph and how this graph is

35th International Symposium on Automation and Robotics in Construction (ISARC 2018)

transformed by applying predefined rewrite rules. An
arrow “rule” indicates the application of a rewrite rule.
At each stage of this process, a parametric CAD system
can interpret and process the graph in order to create an
editable parametric model. This model is further called
the evaluated model. An arrow labeled “evaluation”
marks the generation of the evaluated model out of the
graph. Note, that the graphs in Fig. 1 do not actually
represent the respective geometry. They merely illustrate

the presented concept.

In this paper, we will show how this approach can be
refined and developed further in order to enable the
representation and formal generation of more complex
models. In the case of shield-tunnel models we extend the
method towards the additional support of nonlinear
(meaning “not based solely on the alignment”) geometry
parts, such as fire exit shafts or crosscuts. Furthermore,
we will introduce a possibility to use the graph-based
method for the semi-automatic parametric model
generation in the scope of high-rise construction, namely
steel connections (Figure 2). To achieve this, we will
show how we can refine our graph rewrite system to
allow the representation of procedural models
comprising assemblies and constraints on assembly level.

The paper is structured as follows: Subsequent to the
introduction, Section 2 will give an overview of previous
and related research as well as the theoretic background
of parametric modeling and graph rewriting. Section 3
will introduce our method of graph-based description of
parametric modeling and show how this method is further
refined. Additionally, it will summarize our
implementation work and possible use cases of our
extended method. The paper concludes with a summary.

2 Background and related work
The benefits of the computer-aided or (semi-)automated
creation of designs and models have been addressed by
researchers before. This section puts the presented
approach in context of a short overview of existing
approaches. It further presents the theoretical background
of the proposed methodology in terms of parametric and
procedural modeling and graph rewriting.

2.1 Modeling support
Computers successfully support the process of
generating technical drawings or product models and
parametric CAD software is widely used and enormously
valuable in the building sector [7]. However, the main
purpose of such software is to assist an engineer in his
creative design work, which is one of the most complex
human tasks, as it depends on the consideration of
various constraints to obtain satisfactory solutions [8].
Therefore, a further step is the development of methods
and tools, which actively support a designer by
automatically generating whole sets of design variants or

Figure 2: Detailing of a steel connection.

Figure 1: Conceptual illustration of using graph rewrite rules that formalize detailing steps of
the graph-based representation of a shield-tunnel model. Each instance of the graph can be
evaluated to create an actual model in a parametric CAD-system.

35th International Symposium on Automation and Robotics in Construction (ISARC 2018)

by the automation of repetitive and trivial tasks in the
design process. As the concept presented in this paper
contributes to this field of research, major approaches,
which also utilize graph representations, are summarized
here.

In the field of Computational Design Synthesis (CDS),
Helms [9] uses a graph grammar for the computational
synthesis of product architectures. Design knowledge is
captured in a port-based metamodel and the procedural
design rules of the grammar. Hoisl [10] presents an
approach for creating a general spatial grammar system
that introduces interactive definition and application of
grammar rules in the scope of CDS. It aims at actively
supporting a designer in the modeling process using
mechanical CAD systems. The approach by Kniemeyer
[11] in the domain of biology makes use of a graph
grammar to design and implement a language to support
the functional-structural modeling of plants.

Furthermore, Lee et al. [12] fundamentally describe
how parametric building object behavior can be specified
for building information modeling systems. Their
approach shows how a common method to “describe the
design intent in order to share and reuse the user-defined
parametric objects” between collaborating experts can be
realized. This approach, however, is not intended to
automate the encoding of parametric object behavior
definitions.

2.2 Parametric modeling
The concept of parametric, procedural and feature-based
modeling was developed in the 1990s [13] and is by now
well established and used in many commercial and open
source CAD applications such as Autodesk Inventor,
Siemens NX and FreeCAD.

While a pure geometric model stores only the
coordinates of the geometric elements, the concept of
parametric feature-based modeling is to store the
sequence of sketching and subsequent 3D modeling
operations: The construction history of the model.
Generally, a construction history has the following
structure: Parametric geometric 2D models (sketches) are
composed of geometric objects and parametrical
constraints. During the creation of a sketch in a
parametric CAD application, a system of constraints and
objects is defined and forms a constraint problem. A
geometric constraint solver (GCS) [14] can solve such a
problem. Schultz et al. [15] define the set of parametric
constraints that is implemented by all major constraint
solvers as the standard geometric constraint language. It
comprises the dimensional constraints for distances and
angles as well as the following geometric constraints:
coincident, collinear, tangential, horizontal, vertical,
parallel, perpendicular and fixed.

A parametric sketch created in this manner can then
be used as the basis for an extrusion, sweep, loft or

rotation to create a 3D object, a so-called feature. By
applying Boolean operations, several of these features are
then combined to models that are more complicated and
result in parts. The combination of various parts lead to
the creation of an assembly. On assembly level, different
parts are arranged by mating conditions, which are
basically complex parametric constraints applied to
points, lines or surfaces of parts.

The main advantage of a 3D model created in this
manner is, that it allows changes of any operation in the
construction history without losing the consecutive
modeling operations. Therefore, alterations are easier,
and errors can be fixed without the necessity of a
complete remodeling. This modeling technique, however,
relies on a deep understanding of its basics and therefore
requires extensive training of possible users, as a
multitude of constraints and parts lead to very
complicated models that can get almost unmanaged
without knowing the originator’s intentions Lee et al.
[12]. Our approach therefor aims at introducing
automation mechanisms into parametric feature-based
modeling.

2.3 Graph rewriting
The presented approach for automating the detailing
process in this paper is based on graph theory and also
uses graph rewriting methodology as comprehensively
described by Rozenberg et al. [16]. We employ graphs
and graph rewriting mechanisms to enable the
representation and the modification of procedural
parametric models. An application of graph rewriting to
semi-automatically create and alter parametric sketches
has been presented in Vilgertshofer and Borrmann [5]
and was further developed [6].

Graph rewriting operations are used to create a new
graph out of an existing graph by altering, deleting or
replacing parts (subgraphs) of the existing graph. The
changes are formalized through graph rewrite rules

Figure 2: Graph rewriting via the SPO
(inspired by Blomer et al. [19]).

35th International Symposium on Automation and Robotics in Construction (ISARC 2018)

written as L→R. A graph rewrite rule is defined by a
pattern graph L and a replacement graph R. When a rule
is applied to a graph (called the host graph), this graph is
searched to find a subgraph that matches the graph
pattern defined by L. A successful matching leads to the
replacement of L with R under the consideration of a
preservation morphism r. This preservation morphism
controls how R substitutes or alters an instance of L in the
host graph. The outcome of this rule application is called
the result graph H’ as illustrated in Fig. 2.

There are several different approaches to graph
rewriting. Two main examples are the Single-Pushout
Approach (SPO) and the Double-Pushout Approach
(DPO) [17].

3 Conceptual approach
This section will give an overview of the basic

concept of our existing approach and show how it was
extended

3.1 Graph-based description of parametric
models

In the following section, we will first give a short
comparison of our work so far and discuss its limits.
Thereafter, we describe how we revise and extend it to
generate a wider range of parametric models.

3.1.1 Overview

Parametric modeling CAD-systems use geometric
elements such as points, lines or circles as primitive
planar entities. The parametric constraints as described in
Section 2.2 define the topology of these entities and result
in parametric sketches. Those are the basis for further
procedural modeling operations, which create 3D
features. To represent a procedural parametric model by
means of a graph, it is necessary to define, which types
of geometric elements, parametric constraints and
procedural modeling operations are employed. In the
scope of our research so far, we generally considered the
following types:

• geometric elements: point, line, spline circle, arc
• parametric constraints:

o geometric constraints: coincident, collinear,
equal, concentric, horizontal, vertical, parallel,
perpendicular, fixed

o dimensional constraints: dimensions of one
geometric element, distances between two
geometric elements

• procedural modeling operations: workplane,
extrusion, sweep

This listing roughly reflects the standard geometric
constraint language defined in Schultz et al. [15]

summarizing the most common operations provided by
any parametric CAD system (see Section 2.2).

3.1.2 Formalization

For formal representation of these items, a graph
metamodel describes the necessary attributed types of
graph nodes and edges are. They can then be instantiated
during the generation of a graph. The metamodel also
forms the basis for the definition of graph rewrite rules,
which formally describe modeling steps. An end user can
apply those instead of manually executing the underlying
procedural or parametric modeling operations. Fig. 1 in
Section 1 conceptually illustrates how a graph represents
a model and how the application of predefined rewrite
rules transforms this graph.

The graph representing a procedural geometry model
is a directed multigraph with loops G = (V, E ,Tv ,Te , s, t,
lb, tyv, tye, att). It is defined as follows:

• V = VP ˅ VS is a nonempty finite set of vertices.
Elements of VP are vertices that represent
procedural modeling operations, while elements of
VS represent geometric objects in a sketch.

• E = EP ˅ ES is a nonempty finite set of edges.
Elements of EP are used to represent general
relations or dependencies between the procedural
operations and allocate geometric elements to a
specific sketch. Elements of ES represent parametric
constraints of a geometric element or between two
geometric elements.

• VP ˄ VS = Ø and EP ˄ ES = Ø.
• s : E → V is a mapping that indicates the source

node of all edges.
• t : E → V is a mapping that indicates the target node

of all edges.
• Σ is an alphabet of labels of vertices and edges.
• lb : E ˅ V → Σ is a labeling function.
• Tv = TP

v ˅ TS
v is a set of types for the vertices in V.

TP
v and TS

v are sets of types for nodes in VP and VS
respectively.

• Te = TP
e ˅ TS

e is a set of types for the edges. TP
e and

TS
e are sets of types for nodes in EP and ES

respectively.
• tyv : V → Tv is a typing function for the vertices,

such that tyv(VP) ˄ tyv(VS) = Ø.
• tye : E → Te is a typing function for the edges,

such that tye(EP) ˄ tye(ES) = Ø.
• At is a set of attributes of vertices and edges.
• att : E ˅ V → At is an attributing function.

The metamodel describes the possible set of types Tv
and Te of the graph entities V and E. They can then be
instantiated to execute a rewrite rule to create or alter the
graph. Additionally, the metamodel defines the attributes
of a certain type as well as conditions that control which
nodes and edges may be incident or which node types can

35th International Symposium on Automation and Robotics in Construction (ISARC 2018)

be adjacent. As the type of a graph entity clearly
determines which attributes that entity has, an attributing
function is not given.

Instead of using separate graphs to represent sketches
and subsequent procedural operations we concluded that
combing all information needed for the representation of
a particular model should be embedded in a single graph.
This is realized by integrating graphs that represent a
sketch into the procedural graph. The benefits of this
method are presented in [6] in detail. We still
conceptually separate the subgraphs representing
sketches and the procedural operations that subsequently
create 3D features and therefore use the terms sketch
graph and procedural graph.

3.1.3 Limits

While the presented method enables the automated
generation of basic shield tunnel models, based on the
alignment, limitations occur. This is especially the case,
when we approach the question of non-linear geometry
or use cases in other domains. Creating and placing
various features in a model proves quite difficult when
there is no possibility to arrange them without altering the
position of the sketches. In the parametric feature-based
modeling theory, so-called assemblies remedy this
problem. One or more features are combined into one
part, whereas an assembly consists of multiple parts.
While each part has its own local coordinate system to
position one or more features (each sketch has its own
local coordinate system, too), the assembly itself defines
yet one more coordinate system in which the different

parts are positioned. This placement is achieved by using
either fixed coordinates (which is usually the case for the
first part to be positioned) or by placing one part
relatively to another one. The relative positioning works
quite similar to the parametric constraints, which define
the topology of the geometric elements in a sketch. In this
context, however, the term mating conditions is used.
Basic mating conditions define points, lines or faces of a
part to be constrained to those of another part in terms of
being coincident (points), collinear (lines) or on the same
plane (faces).

In this regard, we also encountered the problem of
referencing geometric entities that are the result of a

Figure 4: Structure of a model consisting of
sketches, features, parts and assemblies.

Figure 5: Extended version of the graph metamodel.

35th International Symposium on Automation and Robotics in Construction (ISARC 2018)

procedural operation in the graph. The extrusion of a
rectangle, for example, forms a cuboid. Here, the four
points and four lines that the sketch describing the
rectangle contains, are represented in the graph. Another
eight lines, however, bound the resulting cuboid.
Additionally, four new points connect those lines and the
cuboid itself comprises six faces. However, the graph
does not represent these 18 new entities and it is therefore
not possible to reference them in subsequent graph
transformation operations. Therefore, we need to refine
the rules creating subgraphs that represent feature objects
to comprise such geometric entities, if they objects need
to be referenced by consecutive rewriting operations.

The necessary extensions to our graph metamodel in
order to include assemblies and mating conditions are
described in the following subsection.

3.2 Extension of the approach
As the graph metamodel is the formal description of
types of graph nodes and edges that can be instantiated,
it has to be extended in order to cover the representation
of the described modeling operations on an assembly
level. Figure 5 depicts the previous version of the
metamodel in black color, while the necessary extensions
are drawn in red color.

Most important extensions are the new node types
part and assembly. They are used in a similar manner as
sketch nodes are used to group the geometric elements of
a sketch: Part nodes group one or more features created
from sketches, whereas assembly nodes group one or
more parts. Furthermore, constraints in the procedural
context are added, to define the relative positioning of the

parts in an assembly.
While this refinement is not extensive in terms of new

node and edge types, it allows us to model more complex
geometry than in the previously presented approach. We
are now able to construct a model consisting of more than
one part and to position these parts relative to one another.
This decomposition of the model allows us to generate
subgraphs representing model parts that are either
completely independent from one another or only related
by mating constraints.

Figure 7: A model before and after applying three
different types of mating constraints: coplanar, collinear
and coincident.

These mating constraints are much better suited to the
relative positioning of three-dimensional objects to one
another than parametric constraints, as we do not have to
consider the positioning of workplanes or the projection

Figure 6: Modeling of a steel connection with the use of features/parts as an
assembly.

35th International Symposium on Automation and Robotics in Construction (ISARC 2018)

of existing geometry between sketches. During the
modeling of parts those operations are still necessary and
helpful, though. When positioning parts in an assembly
they can also be rotated via the application of mating
conditions. As this is not the case with features combined
in a part without using a procedural operation, this also
gives us more freedom in the positioning process. The
graph is in its definition now much more conform to the
general concept of parametric feature based modeling.

As described before, the entities that mating
constraints link to one another have to be present in the
graph in order to apply those constraints. We
concentrated on two possible solutions for this problem:
We can either define a rewrite rule in a way that all new
entities (points, lines and faces) are also created within
the representing graph and can be referenced by further
rewrite rules. Another possibility is to only create those
entities that are necessary for later rewriting operations.
This, of course, is only reasonable if we know at that
point, which entities this will be. We are still considering
which of these solutions is more constructive or if they
should both be implemented simultaneously.

3.3 Use cases and implementation
For the definition and extension of the graph rewrite
system consisting of a metamodel and appropriate graph
rewrite rules, the graph rewrite generator

GrGen.NET [18] has been used while the generation of
the evaluated sketch is performed with the commercial
parametric CAD application Autodesk Inventor. Inventor
contains a geometrical constraint solver, which interprets
the constraint problem defined by the graph. A software
prototype was developed to utilize both the
functionalities of GrGen.NET and of Autodesk Inventor
to apply rewrite rules and perform the consecutive
creation of the evaluated model.
In order to verify the improvements made to the graph
rewrite system we examined two test scenarios. First, we
employed the graph system to model the connection of
two steel beams (Figure 6). Here, the connecting plate is
designed from extruding a sketch to create a 3D feature.
A part consisting only of this feature is then combined
with two other predefined parts (the beams) in an
assembly. To position those three parts in accordance
with each other, several planes of the respective parts
were constrained by mating conditions.

In the scope of modeling non-linear geometry of
shield-tunnels, a crosscut was added to an existing model
of a tunnel. We also realized this by using the introduced
assembly nodes. While the tunnel model without the
crosscut would be modeled as only one part, we now cut
the alignment at both sides of the future position of the
crosscut. As we now have three alignment sections, we
use them as basis for three different parts. The two outer
parts are created by reapplying the existing rules that

Figure 8: Process of adding a crosscut to a tunnel model. Bottom: States of the graph representing the model.
Top: Geometric result of the graph transformation process.

35th International Symposium on Automation and Robotics in Construction (ISARC 2018)

rewrite the graph to create the linear 3D geometry. The
inner part however is represented by a new subgraph.
This subgraph is created by executing a corresponding
rewrite rule that creates the representation of a tunnel
section comprising the opening for the crosscut. This
process is graphically illustrated in Figure 8. Thereby we
create three rather independent subgraphs representing
the three model parts shown in the figure. Mating
constraints are then used to combine them to a consistent
model. In the graph representation the subpgraphs are
therefore connected by edges representing those mating
constraints. For example, they are used to mate the faces
of two tunnel parts that have to align in order to keep
those parts in position respective to each other.

4 Summary
The presented research introduces and extends a concept
for the graph-based representation of product models and
their automatic generation and detailing by performing
graph rewrite operations based on formal rules defined in
a graph rewriting system.

It has already been successfully applied to the product
models of shield-tunnels and the automatic creation of
consistency preserving multi-scale versions of such
models. The main contribution is the further elaboration
of the underlying graph rewriting system that enables the
generation of more complex graphs covering the
representing of a larger variety of parametric
representations. To prove the feasibility of our approach,
the graph rewriting system has been implemented in the
graph rewriting tool GRGEN.NET.

Further research will focus on creating a larger set of
rewrite rules, which enables end users to create more
diversified models in different contexts.

Acknowledgements
We gratefully acknowledge the support of the German
Research Foundation (DFG) for funding the project
under grant FOR 1546. We also want to thank the
members of the 3DTracks research group for their
support and the productive discussions.

References
[1] Braun A., Tuttas S., Borrmann A. and Stilla, U. A

concept for automated construction progress
monitoring using BIM-based geometric constraints
and photogrammetric point clouds. ITcon, 20 (8),
pp. 68-79, 2015

[2] Preidel C., and Borrmann A. Towards code
compliance checking on the basis of a visual
programming language. ITcon 21. 2016

[3] Sigalov K. and König M. Recognition of process

patterns for BIM-based construction schedules.
Advanced Engineering Informatics, 2017.

[4] Borrmann A., Kolbe T.H., Donaubauer A., Steuer
H., Jubierre J.R. and Flurl M. Multi-scale
geometric-semantic modeling of shield tunnels for
GIS and BIM applications. Computer-Aided Civil
and Infrastructure Eng. 30 (4), pp. 263-281, 2015.

[5] Vilgertshofer S. and Borrmann A. Automatic
Detailing of Parametric Sketches by Graph
Transformation. Proc. of the 32nd ISARC, Oulu,
Finland, 2015

[6] Vilgertshofer S. and Borrmann A. Using graph
rewriting methods for the semi-automatic
generation of parametric infrastructure models.
Advanced Engineering Informatics, 2017

[7] Camba J.D. and Contero M. Parametric CAD
modeling: an analysis of strategies for design
reusability. Computer-Aided Design, 74. 2016.

[8] Bhatt M., Borrmann A., Amor R. and Beetz J.
Architecture, computing, and design assistance.
Automation in. Construction, 32, 2013.

[9] Helms B. and Shea K. Computational synthesis of
product architectures based on object-oriented
graph grammars, J. of Mech. Design, 134, 2012.

[10] Hoisl F.R. Visual, Interactive 3D Spatial Grammars
in CAD for Computational Design Synthesis, Ph.D.
thesis, TU München, 2012.

[11] Kniemeyer O. Design and Implementation of a
Graph Grammar Based Language for Functional-
Structural Plant Modelling. Ph.D. thesis, BTU
Cottbus, 2008.

[12] Lee G. Sacks R., and Eastman C.M. Specifying
parametric building object behavior (BOB) for a
building information modeling system. Automation
in Construction, 2006.

[13] Shah J.J. and Mäntylä M. Parametric and Feature-
Based CAD/CAM: Concepts, Techniques and
Applications, 1995.

[14] Fudos I. and Hoffmann C.M. A graph-constructive
approach to solving systems of geometric
constraints. ACM Trans Graph, 16, 1997.

[15] Schultz C., Bhatt M. and Borrmann A. Bridging
qualitative spatial constraints and feature-based
parametric modelling: expressing visibility and
movement constraints. Adv. Eng. Inf. 31, 2017

[16] Rozenberg G. Handbook of Graph Grammars and
Computing by Graph Transformation, vol. 1, World
Scientific, 1997.

[17] Heckel R. Graph transformation in a nutshell.
Electron. Notes Theoret. Comp. Sci. 148, 2006.

[18] Geiß R., Batz G.V., Grund D., Hack S. and
Szalkowski A. GRGEN: A fast SPO-based graph
rewriting tool. Proc. ICGT 4178, 2006.

[19] Blomer J., Geiß R. and Jakumeit E. The
GrGen.NET User Manual, 2014.

	1 Introduction
	2 Background and related work
	2.1 Modeling support
	2.2 Parametric modeling
	2.3 Graph rewriting

	3 Conceptual approach
	3.1 Graph-based description of parametric models
	3.1.1 Overview
	3.1.2 Formalization
	3.1.3 Limits

	3.2 Extension of the approach
	3.3 Use cases and implementation

	4 Summary
	Acknowledgements
	References

