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Abstract – 

Earthwork productivity varies depending on a 
unique geologic condition, types of earthwork 
equipment, and an equipment allocation plan. For 
this reason, it is difficult to accurately estimate the 
productivity of an earthwork. To address this issue, 
this paper develops an imaging-to-simulation 
method in which a real jobsite data is automatically 
collected and used for analyzing the earthwork 
productivity. Object existence and its location in 
image data are identified by convolutional networks, 
and they are used to infer the earthwork context. 
The context information is transformed into the 
simulation input by the context reasoning processes. 
A productivity report is produced by using the 
WebCYCLONE simulation. The developed method 
was tested in a tunnel construction site, providing a 
new equipment allocation plan, which minimize the 
cost and time compared with the original plan. 
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1 Introduction 

Since earthwork in construction involves various 
types of construction equipment, establishing the 
optimal equipment allocation plan is a primary concern 
of site managers. Construction process simulation can 
be used to generate a productivity report to a given 
earthwork plan, thereby enabling comparison among 
different earthwork plans [1,2]. However, even with the 
simulation results, the optimal plan is not easily 

established due to a unique geologic characteristic and 
dynamic working conditions in jobsite. These issues 
cause the simulation input to deviate from the real 
jobsite working status. As a result, the reliability of the 
productivity report is degraded, because a small 
deviation of the simulation input significantly affects 
the simulation results. Previous studies proposed vision-
based productivity analysis methods, which provides the 
cycle time of earthmoving [3-5] or concrete pouring 
operations [6]. Ham, et al. [7] presented an imaging-to-
simulation framework to detect hazards related to strong 
winds. However, integration of construction simulation 
and vision-based monitoring for productivity analysis 
has not yet been proposed.  

To address these issues, this study proposes an 
imaging and simulation integrated method to analyze an 
earthmoving process productivity, as shown in Figure 1. 
This method automates the process of jobsite data 
collection for productivity analysis, thereby improving 
the reliability of the simulation results. An earthmoving 
process in a tunnel construction site was selected for 
validating the proposed method. The initial idea of this 
study was presented in [8]. 

2 Vision-based context reasoning 

A tunnel site, construction under the new Austrian 
tunneling method (NATM), was selected to apply the 
proposed method. In the tunnel construction site, the 
amount of muck produced daily was 680 m3, and a 
closed-circuit television (CCTV) was installed at an 
elevated position to monitor muck-loading tasks by a 
single excavator and seven dump trucks. The maximum 
amount of muck that can be stored in the temporary 

Figure 1. Overview of the proposed method 
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disposal area was 1,500 m3. To detect the target objects 
in tunnel CCTV image data, a region-based fully 
convolutional networks (R-FCN) proposed by Dai, et al. 
[9] is utilized. Using R-FCN, construction equipment 
such excavators and dump trucks can be detected with 
the high accuracy at a short processing time [10]. R-
FCN comprises three main modules for object detection, 
which are the feature extraction layers, region proposal 
network, and the position-sensitive score maps for 
determining the object class and location in image data. 
Refer to Dai, et al. [9]’s work for details. 

For producing the simulation input, object class and 
location information from image data can be converted 
into the context information [3-6]. The context 
information includes the state and event information. 
The state information denotes a working or idle state of 
an excavator and dump trucks in regard to loading or 
hauling tasks. Figure 2 illustrates the state reasoning 
process. The event information denotes the time to 
complete a single loading or hauling task. It records the 
start and end time of a loading task, following the 
process illustrated in Figure 3. The start and end time of 
a hauling task is recorded by the site access information 
of a dump truck. 

2.1 Earthmoving Process Simulation using 
WebCYCLONE 

For the construction process simulation using the 
WebCYCLONE [11], the earthmoving process should 
be modelled as a form of discrete event elements used in 

WebCYCLONE such as NORMAL, COMBI, Q NODE, 
and ARROW. The target earthmoving process includes 
eight elements, which are “Loading”, “Excavator Idle”, 
“Hauling”, “Loaded Truck Queue”, “Dump”, “Dump 
Spotter Idle”, “Return”, and “Dump Queue”. The 
elements constitute the earthmoving process structure, 
representing loading and hauling cycles of an excavator 
and dump trucks. 

3 Experiments and Results 

The proposed method was performed on the Intel i7-
6700 CPU and the GTX1080 8GB GPU with the 
Ubuntu 16.04 operating system. The R-FCN model [9] 
pretrained with the ImageNet data was re-trained using 
the AIMdataset [10] and the tunnel image data. The 
length of the tunnel video for the test was 8 h 11 m. The 
video resolution was 720 × 480. To evaluate R-FCN for 
object detection, the evaluation criterion of the 
PASCAL VOC [12]  was used. The experimental results 
of object detection and vision-based context reasoning 
are shown in Table 1. R-FCN trained with the 
AIMdataset and the tunnel image data recorded the 
mean average precision (mAP) of 99.09% for detecting 
an excavator and dump trucks. The samples of the 
detection results are shown in Figure 4. The errors of 
the context reasoning processes were 0%, 1.6%, and 
0.12% for estimating the number of task cycles, average 
duration of loading tasks, and average duration of 
hauling tasks, respectively. 

 

Figure 3. Event reasoning process Figure 2. State reasoning process 
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Table 1 Performance of equipment detection and 
vision-based context reasoning 

Detection performance (mAP) 99.09% 

Error rates of 
context reasoning 

Number of task 
cycles 

0% 

duration average of 
loading tasks 

1.60% 

duration average of 
hauling tasks 

0.12% 

 

Table 2 Productivity report 

Daily muck output 680m3 

Capacity of disposal 
storage area 

1500m3 

Current resource 
allocation 

1 excavator, 
7 dump trucks 

Current productivity 100.88 m3/hour 

Current unit cost 5.59 $/m3 

Optimal resource 
allocation 

1 excavator, 
10 dump trucks 

Optimal productivity 141.78 m3/hour 

Optimal unit cost 5.45 $/m3 

Cost savings  
(for 600 days) 

$310,858  

To validate the simulation model, the simulation 
result was compared to the actual earthmoving process. 
The deviation of the total working time between the 
actual earthmoving process and the simulation result 
was only 2.23% for the 44 task cycles, confirming that 
the simulation model was correctly modelled as the 
actual earthmoving process. The productivity report 
indicates that the current earthmoving process can be 
improved by changing the number of dump trucks to 10 
from 7, as shown in Table 2. The equipment operation 
costs are $523.33 and $566.94 for each dump truck and 
excavator, respectively. The payload of a dump truck 
was 17m3. With the new equipment allocation plan, the 
idle time of the excavator can be reduced to 21.12% 
from 43.97%. Moreover, the total earthmoving cost can 
be saved by $310,858 (12.25%) for 384 working days of 
earthmoving in the NATM process of 600 days.  

4 Conclusion  

This study presents an imaging and simulation 
integrated method for analyzing the earthwork 
productivity based on the actual jobsite data. Image data 
was process by R-FCN to identify the location and class 
of a target object. The context information was 
automatically interpreted by the context reasoning 
processes. By using the actual construction site data, the 
reliability of the construction process simulation results 
was enhanced. Integration of imaging and simulation 
enables rapid generation of a productivity report under 
changing geologic conditions. This capability allows 
site managers to optimize the resource allocation for the 
current geologic condition. Currently, the proposed 
model is suitable for analyzing a single earthmoving 
process. The developed model should be further 
improved to analyze a complex interaction among 
various jobsite work processes as well as the 
earthmoving process. 

Figure 2. Samples of the detection results 
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